The air pressure effect on the homogeneous nucleation of carbon dioxide by molecular simulation
暂无分享,去创建一个
Hans Hasse | Martin Horsch | Jadran Vrabec | Thorsten Windmann | H. Hasse | M. Horsch | J. Vrabec | Zengyong Lin | Thorsten Windmann | Zengyong Lin
[1] Y. Viisanen,et al. Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water–ethanol , 1994 .
[2] Kenji Yasuoka,et al. Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid , 1998 .
[3] J. Feder,et al. Homogeneous nucleation and growth of droplets in vapours , 1966 .
[4] D. Brus,et al. Unraveling the "pressure effect" in nucleation. , 2008, Physical review letters.
[5] L. Szybisz,et al. Curvature effects on the surface thickness and tension at the free interface of4Hesystems , 2003, cond-mat/0305662.
[6] Hans Hasse,et al. A Set of Molecular Models for Symmetric Quadrupolar Fluids , 2001 .
[7] H. A. Lorentz. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase , 1881 .
[8] Guido Reina,et al. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics. , 2008, The Journal of chemical physics.
[9] D. Brus,et al. The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium. , 2006, The Journal of chemical physics.
[10] Y. Viisanen,et al. Measurement of the molecular content of binary nuclei. Use of the nucleation rate surface for ethanol–hexanol , 1993 .
[11] M. Kulmala,et al. Nucleation studies in the Martian atmosphere , 2005 .
[12] M. Uematsu,et al. Critical parameters of {xCO2+ (1 −x)CHF3} forx= (1.0000, 0.7496, 0.5013, and 0.2522) , 1996 .
[13] 泰岡 顕治. Molecular dynamics of homogeneous nucleation in vapor phase , 1997 .
[14] David Reguera,et al. Evaluating nucleation rates in direct simulations. , 2009, The Journal of chemical physics.
[15] D. Brus,et al. The homogeneous nucleation of 1-pentanol in a laminar flow diffusion chamber: the effect of pressure and kind of carrier gas. , 2008, The Journal of chemical physics.
[16] J. Hopcroft,et al. Efficient algorithms for graph manipulation , 1971 .
[17] R. Tolman. The Effect of Droplet Size on Surface Tension , 1949 .
[18] H. Hasse,et al. Grand Equilibrium: vapour-liquid equilibria by a new molecular simulation method , 2002, 0905.0612.
[19] Toshikazu Ebisuzaki,et al. Extended study of molecular dynamics simulation of homogeneous vapor-liquid nucleation of water. , 2007, The Journal of chemical physics.
[20] Martin Horsch,et al. Grand canonical steady-state simulation of nucleation. , 2009, The Journal of chemical physics.
[21] Bin Chen,et al. Dumbbells and onions in ternary nucleation. , 2007, Physical chemistry chemical physics : PCCP.
[22] J. Katz,et al. The thermodynamics of cluster formation in nucleation theory , 1972 .
[23] Hans Hasse,et al. Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] P. Attard,et al. Curvature-dependent surface tension of a growing droplet. , 2003, Physical review letters.
[25] Hans Hasse,et al. Hydrogen bonding of methanol in supercritical CO2: comparison between 1H NMR spectroscopic data and molecular simulation results. , 2007, The journal of physical chemistry. B.
[26] H. Hasse,et al. Unlike Lennard-Jones parameters for vapor-liquid equilibria , 2007, 0904.4436.
[27] J. Wölk,et al. Homogeneous nucleation rates of 1-pentanol. , 2004, The Journal of chemical physics.
[28] W. Marsden. I and J , 2012 .
[29] Hans Hasse,et al. Molecular models for 267 binary mixtures validated by vapor–liquid equilibria: A systematic approach , 2009 .
[30] Kenji Yasuoka,et al. Molecular dynamics of homogeneous nucleation in the vapor phase. II. Water , 1998 .
[31] Frank H. Stillinger,et al. Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium , 1963 .
[32] H. Hasse,et al. Thermodynamic models for vapor-liquid equilibria of nitrogen + oxygen + carbon dioxide at low temperatures , 2009, 0904.4795.
[33] H. Hasse,et al. Prediction of ternary vapor–liquid equilibria for 33 systems by molecular simulation , 2009, 0906.3170.
[34] D. Frenkel,et al. Rate of homogeneous crystal nucleation in molten NaCl. , 2005, The Journal of chemical physics.
[35] Y. Viisanen,et al. MEASUREMENT OF THE MOLECULAR CONTENT OF BINARY NUCLEI. III: USE OF THE NUCLEATION RATE SURFACES FOR THE WATER-N-ALCOHOL SERIES , 1995 .
[36] Steady-state molecular dynamics simulation of vapour to liquid nucleation with McDonald's daemon , 2009, 0911.5485.
[37] D. Reguera,et al. Crossover from nucleation to spinodal decomposition in a condensing vapor. , 2009, The Journal of chemical physics.
[38] L. Krasnoperov,et al. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation. , 2007, The Journal of chemical physics.