Optical halide sensing using fluorescence quenching : theory, simulations and applications : a review

In the last century the production and application of halides assumed an ever greater importance. In the fields of medicine, dentistry, plastics, pesticides, food, photography etc many new halogen containing compounds have come into everyday use. In an analogous manner many techniques for the detection and determination of halogen compounds and ions have been developed with scientific journals reporting ever more sensitive methods. The 19th century saw the discovery of what is now thought of as a classical method for halide determination, namely the quenching of fluorescence. However, little analytically was done until over 100 years after its discovery, when the first halide sensors based on the quenching of fluorescence started to emerge. Due to the typical complexity of fluorescence quenching kinetics of optical halide sensors and their lack of selectivity, they have found little if any place commercially, despite their sensitivity, where other techniques such as ion-selective electrodes, x-ray fluorescence spectroscopy and colorimetry have dominated the analytical market. In this review article the author summarizes the relevant theory and work to date for halide sensing using fluorescence quenching methods and outlines the future potential that fluorescence quenching based optical sensors have to offer in halide determination.

[1]  V. Truesdale,et al.  Determination of total iodine and iodate-iodine in natural freshwater , 1982 .

[2]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[3]  F. Hattab Analytical methods for the determination of various forms of fluoride in toothpastes. , 1989, Journal of dentistry.

[4]  Maurice R. Eftink,et al.  Fluorescence Quenching: Theory and Applications , 2002 .

[5]  S J Remington,et al.  Structural and spectral response of green fluorescent protein variants to changes in pH. , 1999, Biochemistry.

[6]  K. G. Stone Determination of Iodide , 1954 .

[7]  O. Wolfbeis,et al.  A new method for the endpoint determination in argentometry using halide-sensitive fluorescent indicators and fiber optical light guides , 1984 .

[8]  R. Sandulescu,et al.  Spectrophotometric determination of fluoride in dosage forms and dental preparations. , 1996, Journal of pharmaceutical and biomedical analysis.

[9]  Christian Huber,et al.  Energy transfer-based lifetime sensing of chloride using a luminescent transition metal complex , 1998 .

[10]  G. Amy,et al.  Measurement of molecular weight distributions of organic halide in kraft mill waste streams, waste solids and pulp , 1990 .

[11]  L. Stryer Fluorescence energy transfer as a spectroscopic ruler. , 1978, Annual review of biochemistry.

[12]  J. Frölich,et al.  Determination of chloride in biological fluids as pentafluorobenzylchloride by reversed-phase high-performance liquid chromatography and UV detection , 1992 .

[13]  W. Horrocks Luminescence spectroscopy. , 1993, Methods in enzymology.

[14]  A Wlodawer,et al.  Spectral variants of green fluorescent protein. , 1999, Methods in enzymology.

[15]  P. Sloan,et al.  The Quantab strip in the measurement of urinary chloride and sodium concentrations. , 1984, Clinical chemistry.

[16]  R. Taylor,et al.  Chloride ion in intensive care medicine , 1992, Critical care medicine.

[17]  W. Buchberger,et al.  Selective determination of bromide and iodide in serum and urine by gas chromatography , 1989 .

[18]  F. Castaño,et al.  On the fluorescence quenching of pyrene by iodine , 1983 .

[19]  H. Teranishi,et al.  Effect of pressure on the external heavy atom quenching of pyrene fluorescence in fluid solution , 1984 .

[20]  S. Lehrer Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. , 1971, Biochemistry.

[21]  A. Szabó,et al.  Theory of diffusion-influenced fluorescence quenching , 1989 .

[22]  E. Sevick-Muraca,et al.  Quantitative optical spectroscopy for tissue diagnosis. , 1996, Annual review of physical chemistry.

[23]  M. Croxson,et al.  Chloride interference with use of an iodide-selective electrode for urinary I. , 1983, Clinical chemistry.

[24]  J. Coenegracht,et al.  A chemical determination of plasma inorganic iodine by ultrafiltration. , 1972, Clinica chimica acta; international journal of clinical chemistry.

[25]  L. Tsui,et al.  Erratum: Identification of the Cystic Fibrosis Gene: Genetic Analysis , 1989, Science.

[26]  A. Wach,et al.  Solvents effects on the fluorescence quenching of anthracene by iodide ions , 1991 .

[27]  Otto Stern,et al.  Über die abklingungszeit der fluoreszenz , 1919 .

[28]  Richard M. Noyes,et al.  Effects of diffusion rates on chemical kinetics , 1961 .

[29]  A. Mills Optical sensors for oxygen: a log-gaussian multisite-quenching model , 1998 .

[30]  T. James,et al.  Enzymatic Measurement of Sweat Sodium and Chloride , 1997, Annals of clinical biochemistry.

[31]  F. Kusu,et al.  Selective determination of chloride and bromide ions in serum by cyclic voltammetry. , 1996, Analytical biochemistry.

[32]  James N. Demas,et al.  Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex , 1987 .

[33]  J. Lakowicz,et al.  Frequency-Domain Fluorescence Spectroscopy , 2002 .

[34]  J. Howie,et al.  Fast-responding, fibre-optic based sensing system for the volatile anaesthetic halothane, using an ultraviolet absorption technique and a fluorescent film. , 1993, The Analyst.

[35]  Sangyoub Lee,et al.  Theory of diffusion-influenced fluorescence quenching. Effects of static quenching on the Stern-Volmer curve , 1992 .

[36]  J. Lakowicz Quenching of Fluorescence , 1983 .

[37]  H. Epstein,et al.  An improved ultra-violet halothane meter. , 1980, British journal of anaesthesia.

[38]  J. Burguera,et al.  Head-space flow injection for the on-line determination of iodide in urine samples with chemiluminescence detection. , 1996, Talanta.

[39]  Iouri E. Borissevitch,et al.  More about the inner filter effect: corrections of Stern–Volmer fluorescence quenching constants are necessary at very low optical absorption of the quencher , 1999 .

[40]  D. Cowan,et al.  Photochemical reactions. V. Photodimerization of acenaphthylene. Heavy-atom solvent effects , 1970 .

[41]  D. Xiao,et al.  Development of an iodine sensor based on fluorescence energy transfer , 2000 .

[42]  F. R. van Leeuwen,et al.  The toxicology of bromide ion. , 1987, Critical reviews in toxicology.

[43]  S J Remington,et al.  Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein. , 2000, Journal of molecular biology.

[44]  G. Patonay,et al.  Fluorescence Quenching Studies of Near-Infrared Fluorophores , 1989 .

[45]  Maria C. Hicks,et al.  Predicting chloride profiles in concrete , 1994 .

[46]  J. Gustafson,et al.  Cystic Fibrosis , 2009, Journal of the Iowa Medical Society.

[47]  C. Geddes A halide sensor based on the quenching of fluorescence of an immobilised indolium salt , 2000 .

[48]  N. Turro Modern Molecular Photochemistry , 1978 .

[49]  E. Hogendoorn,et al.  Liquid chromatographic determination of bromide in human milk and plasma. , 1985, Journal of chromatography.

[50]  F. Hattab Direct determination of fluoride in selected dental materials. , 1987, Dental materials : official publication of the Academy of Dental Materials.

[51]  J. Versieck,et al.  Normal levels of trace elements in human blood plasma or serum , 1980 .

[52]  DESIGN NOTE: A compact optical flow cell for use in aqueous halide determination , 1999 .

[53]  O. Wolfbeis,et al.  Syntheses of fluorescent dyes. XIV. Standards for fluorescence measurements in the near neutral pH-range† , 1982 .

[54]  I. Z. Steinberg Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides. , 1971, Annual review of biochemistry.

[55]  M. Eftink,et al.  Fluorescence quenching studies with proteins. , 1981, Analytical biochemistry.

[56]  Jean-Louis Habib Jiwan,et al.  A halogen anion sensor based on the hydrophobic entrapment of a fluorescent probe in silica sol-gel thin films , 1997 .

[57]  N. Kaplan,et al.  Two techniques to improve adherence to dietary sodium restriction in the treatment of hypertension. , 1982, Archives of internal medicine.

[58]  J. Peterson,et al.  Fiber-optic probe for in vivo measurement of oxygen partial pressure. , 1984, Analytical chemistry.

[59]  M. Kujawa A. S. Prasad: Trace Elements and Iron in Human Metabolism. 392 Seiten, 26 Tab., Plenum Medical Book Company, New York und London 1978. Preis: 35,40 $ , 1980 .

[60]  A. K. Solomon,et al.  Kinetics of Chloride-Bicarbonate Exchange Across the Human Red Blood Cell Membrane , 1997, The Journal of Membrane Biology.

[61]  A. Piriou,et al.  Rapid and specific high-performance liquid chromatographic method for the determination of iodide in urine. , 1995, Journal of chromatography. B, Biomedical applications.

[62]  C. Geddes,et al.  New indolium and quinolinium dyes sensitive to aqueous halide ions at physiological concentrations , 1999 .

[63]  S. Seybold,et al.  Urinary iodide determined by paired-ion reversed-phase HPLC with electrochemical detection. , 1994, Clinical chemistry.

[64]  Paul J Cosentino,et al.  Fiber-optic chloride sensor development , 1995 .

[65]  C. Hahn,et al.  Halothane interference at an amperometric oxygen electrode: the development of an oxygen/halothane sensor. , 1988, Journal of biomedical engineering.

[66]  J. Charlesworth Optical sensing of oxygen using phosphorescence quenching , 1994 .

[67]  A. Mills,et al.  Chemical influences on the luminescence of ruthenium diimine complexes and its response to oxygen , 1997 .

[68]  S. Bigger,et al.  The dependence of quinine fluorescence quenching on ionic strength , 1996 .

[69]  B. Michalke,et al.  Determination of free iodide in human serum: Separation from other I-species and quantification in serum pools and individual samples , 1996 .

[70]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[71]  Ramaier Narayanaswamy,et al.  Studies on quenching of fluorescence of reagents in aqueous solution leading to an optical chloride-ion sensor , 1997 .

[72]  L. Nie,et al.  Determination of chloride in human body fluids by ion chromatography with piezoelectric sensor as detector , 1996 .

[73]  T. Kitagawa,et al.  Gas chromatographic method for the determination of fluoride ion in biological samples. II. Stability of fluorine-containing drugs and compounds in human plasma. , 1988, Chemical & pharmaceutical bulletin.

[74]  E. Kissa Determination of inorganic fluoride in blood with a fluoride ion-selective electrode. , 1987, Clinical chemistry.

[75]  J. J. Potter,et al.  Determination of fluoride and monofluorophosphate in toothpastes by ion chromatography. , 1986, Journal of chromatography.

[76]  M. Lippitsch,et al.  Time-resolved spectroscopy of the fluorescence quenching of a donor — acceptor pair by halothane , 1992 .

[77]  O. Wolfbeis,et al.  Fiber optical fluorosensor for determination of halothane and or oxygen , 1985 .

[78]  E. Quiñones,et al.  Fluorescence quenching of pyrene derivatives by iodide compounds in erythrocyte membranes: an approach of the probe location , 1995 .

[79]  D. Birch,et al.  Chloride-sensitive fluorescent indicators. , 2001, Analytical biochemistry.

[80]  S. P. Srinivas,et al.  Assessment of swelling-activated Cl- channels using the halide-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl)quinolinium. , 1998, Biophysical journal.

[81]  M. Miller,et al.  Anion-exchange chromatographic determination of bromide in serum. , 1984, Clinical chemistry.

[82]  A. Verkman,et al.  Long-wavelength iodide-sensitive fluorescent indicators for measurement of functional CFTR expression in cells. , 1999, American journal of physiology. Cell physiology.

[83]  G. Durack,et al.  A flow cytometric method for measurement of intracellular chloride concentration in lymphocytes using the halide-specific probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ). , 1997, Cytometry.

[84]  C. D. Geddes,et al.  Halide sensing using the SPQ molecule , 2001 .

[85]  Joseph R. Lakowicz,et al.  Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics and fluorescence polarization immunoassay , 1995, Photonics West.

[86]  T. Moriya Excited-state Reactions of Coumarins in Aqueous Solutions. II. The Fluorescence Quenching of 7-Ethoxycoumarins by Halide Ions , 1984 .

[87]  T. G. Thompson,et al.  Determination of Chemically Combined Iodine in Sea Water by Amperometric and Catalytic Methods , 1960 .

[88]  T. Rao,et al.  Ion-chromatographic determination of iodide in sea water with UV detection , 1998 .

[89]  R. Pardo,et al.  Fluoride and chloride determination in cheese with ion‐selective electrodes , 1991 .

[90]  Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots , 1983 .

[91]  R E COOKE,et al.  A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. , 1959, Pediatrics.

[92]  T. Ando,et al.  Charge effects on the dynamic quenching of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide. , 1980, Journal of biochemistry.

[93]  N. Fineberg,et al.  Overnight Urine Collections to Estimate Sodium Intake , 1982, Hypertension.

[94]  H. Spitzy,et al.  Separation and determination of thyroid hormones in the nonogram range based on the sorption properties of Sephadex , 1966 .

[95]  K. Müller Über eine einfache sephadex-trenntechnik zur bestimmung der 131jod verteilung im blutserum , 1967 .

[96]  Yoshikazu Yamamoto,et al.  Determination of urinary fluoride by ion chromatography , 1993 .

[97]  F. Bright,et al.  Simultaneous Determination of Br− and I− with a Multiple Fiber-Optic Fluorescence Sensor , 1990 .

[98]  M E Cox,et al.  Detection of oxygen by fluorescence quenching. , 1985, Applied optics.

[99]  H. Barbour Development and Evaluation of the Simultaneous Determination of Sweat Sodium and Chloride by Ion-Selective Electrodes , 1991, Annals of clinical biochemistry.

[100]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[101]  W. Laws,et al.  Fluorescence quenching studies: analysis of nonlinear Stern-Volmer data. , 1992, Methods in enzymology.

[102]  H. Preuss Fundamentals of clinical acid-base evaluation. , 1993, Clinics in laboratory medicine.

[103]  M. Mac,et al.  Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions , 1991 .

[104]  E. Steinnes,et al.  Determination of plasma inorganic iodine by neutron activation analysis after ultrafiltration. , 1980, Scandinavian journal of clinical and laboratory investigation.

[105]  C. Geddes Optical thin film polymeric sensors for the determination of aqueous chloride, bromide and iodide ions at high pH, based on the quenching of fluorescence of two acridinium dyes , 2000 .

[106]  P. Wagner,et al.  Chromatographic analysis of multiple tracer inert gases in the presence of anesthetic gases. , 1978, Anesthesiology.

[107]  Benjamin A. DeGraff,et al.  Luminescence quenching mechanism for microheterogeneous systems , 1991 .

[108]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[109]  F. Bright,et al.  Characterization and comparison of three fiber-optic sensors for iodide determination based on dynamic fluorescence quenching of Rhodamine 6G , 1987 .

[110]  T. Mukherjee,et al.  Quenching of substituted naphthalenes fluorescence by chloromethanes , 1995 .

[111]  A S Verkman,et al.  Long-wavelength chloride-sensitive fluorescent indicators. , 1994, Analytical biochemistry.

[112]  John E. Wampler,et al.  Fundamentals of Fluorescence Microscopy , 2002 .

[113]  O. Wolfbeis,et al.  Fluorescence quenching method for determination of two or three components in solution , 1983 .

[114]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[115]  D. Poole,et al.  The rapid measurement of fluoride concentrations in stored human saliva by means of a differential electrode cell. , 1989, Archives of oral biology.

[116]  A. Mishra,et al.  Static and dynamic model for 1-naphthol fluorescence quenching by carbon tetrachloride in dioxane—acetonitrile mixtures , 1993 .

[117]  E. Butler The analytical chemist at sea: measurements of iodine and arsenic in marine waters , 1996 .

[118]  David A. Hatrick,et al.  Time-resolved nonlinear fluorescence spectroscopy using femtosecond multiphoton excitation and single-photon timing detection , 1997 .

[119]  B. Culik Microdiffusion and spectrophotometric determination of fluoride in biological samples , 1986 .

[120]  R. Clegg Fluorescence resonance energy transfer. , 2020, Current Opinion in Biotechnology.

[121]  T. A. Webb,et al.  Radioimmunoassay for prostatic acid phosphatase helps discriminate patients with prostatic cancer. , 1982, Clinical chemistry.

[122]  J. Garvin,et al.  Fluorescent determination of chloride in nanoliter samples. , 1999, Kidney international.

[123]  A. Verkman,et al.  Synthesis and characterization of dual-wavelength Cl--sensitive fluorescent indicators for ratio imaging. , 1999, American journal of physiology. Cell physiology.

[124]  Joan F. Brennecke,et al.  A Steady-State and Time-Resolved Fluorescence Study of Quenching Reactions of Anthracene and 1,2-Benzanthracene by Carbon Tetrabromide and Bromoethane in Supercritical Carbon Dioxide , 1997 .

[125]  T. Moriya Excited-State Reactions of Coumarins in Aqueous Solutions. VI. Fluorescence Quenching of 7-Hydroxycoumarins by Chloride Ions in Acidic Solutions , 1988 .

[126]  J. Lakowicz,et al.  Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. , 1973, Biochemistry.

[127]  T. Peters,et al.  Identification of the cystic fibrosis gene. , 1990, BMJ.

[128]  S J Remington,et al.  Mechanism and Cellular Applications of a Green Fluorescent Protein-based Halide Sensor* , 2000, The Journal of Biological Chemistry.

[129]  A. Verkman,et al.  Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators. , 2000, Biophysical chemistry.

[130]  Helmut Offenbacher,et al.  Optical sensor for continuous determination of halides , 1984 .

[131]  K. Heydorn Quality assurance and statistical control , 1991 .

[132]  李幼升,et al.  Ph , 1989 .

[133]  M. Licchelli,et al.  Sensing of transition metals through fluorescence quenching or enhancement. A review , 1996 .

[134]  Philip A. Gale,et al.  A colourimetric calix[4]pyrrole–4-nitrophenolate based anion sensor† , 1999 .

[135]  Andrew Mills,et al.  Response characteristics of optical sensors for oxygen: a model based on a distribution in τoand kq , 1999 .

[136]  D. Birch,et al.  Chloride sensitive probes for biological applications , 2001 .

[137]  T. Mukherjee,et al.  Simultaneous presence of static and dynamic component in the fluorescence quenching for substituted naphthalene—CCl4 system , 1995 .

[138]  S. A. Momin,et al.  Quenching of fluorescence of polynuclear aromatic hydrocarbons by chlorine , 1992 .

[139]  S. D. Winter,et al.  Measurement of urine electrolytes: clinical significance and methods. , 1981, Critical reviews in clinical laboratory sciences.

[140]  D. A. Labianca,et al.  Structure-reactivity factors in the quenching of fluorescence from naphthalenes by conjugated dienes , 1972 .

[141]  Sean W. Carrigan,et al.  The fluorescence quenching of 5,6-benzoquinoline and its conjugate acid by Cl−, Br−, SCN− and I− ions , 1996 .

[142]  David J. S. Birch,et al.  Time-Domain Fluorescence Spectroscopy Using Time-Correlated Single-Photon Counting , 2002 .

[143]  L. Moulton,et al.  Inadequate measurement of urinary chloride. , 1998, Annals of clinical and laboratory science.

[144]  A. Verkman,et al.  Membrane chloride transport measured using a chloride-sensitive fluorescent probe. , 1987, Biochemistry.

[145]  J. Demas,et al.  Oxygen sensors based on luminescence quenching: interactions of metal complexes with the polymer supports. , 1994, Analytical chemistry.

[146]  R. Sherman,et al.  Bedside urinary chloride measurement: assessment in the acute setting. , 1987, The American journal of emergency medicine.

[147]  Benjamin A. DeGraff,et al.  Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes , 1991 .

[148]  R. Riggin,et al.  Measurement of Organic Halide Content of Aqueous and Solid Waste Samples , 1984 .

[149]  C. Geddes,et al.  Fluorescent dyes bound to hydrophilic copolymers: Applications in aqueous halide sensing , 2000 .

[150]  H. Cheung Resonance Energy Transfer , 2002 .

[151]  Harry B. Mark,et al.  Kinetics in analytical chemistry , 1968 .

[152]  A. Verkman,et al.  Structure-activity relationships of chloride-sensitive fluorescent indicators for biological application. , 1988, Analytical biochemistry.

[153]  G. K. Rollefson,et al.  The Quenching of Fluorescence. Deviations from the Stern-Volmer Law , 1950 .

[154]  Rebekka M. Wachter,et al.  Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate , 1999, Current Biology.

[155]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[156]  Dietmar Kieslinger,et al.  Luminescence lifetime-based sensing: new materials, new devices , 1997 .

[157]  F. Veinberg,et al.  Determination of iodide in serum and urine by ion-pair reversed-phase high-performance liquid chromatography with coulometric detection. , 1995, Journal of chromatography. B, Biomedical applications.

[158]  Determination of fluoride in Spanish vinegars , 1992 .

[159]  Benjamin A. DeGraff,et al.  Design and Applications of Highly Luminescent Transition Metal Complexes , 1991 .

[160]  J. Naim,et al.  The in vitro quenching effects of iron and iodine on fluorescein fluorescence. , 1986, The Journal of surgical research.

[161]  Andrew Mills,et al.  Controlling the sensitivity of optical oxygen sensors , 1998 .

[162]  W. Buchberger,et al.  Determination of traces of iodide in serum and urine by ion chromatography , 1985 .

[163]  William R. Ware,et al.  OXYGEN QUENCHING OF FLUORESCENCE IN SOLUTION: AN EXPERIMENTAL STUDY OF THE DIFFUSION PROCESS , 1962 .

[164]  J. Lakowicz,et al.  Lifetime-Based Sensing , 2002 .

[165]  H. Kautsky,et al.  Quenching of luminescence by oxygen , 1939 .

[166]  K. Sullivan,et al.  Green Fluorescent Proteins , 1999 .

[167]  J. Demas,et al.  Oxygen sensors based on luminescence quenching of metal complexes:  osmium complexes suitable for laser diode excitation. , 1996, Analytical chemistry.

[168]  W. E. Morf,et al.  Anion-selective liquid membrane electrodes based on lipophilic quaternary ammonium compounds , 1984 .

[169]  M. Tucker,et al.  Measurement of chloride concentration in microvolume samples of sweat , 1994, Pediatric pulmonology.

[170]  A. Watkins Kinetics of fluorescence quenching by inorganic anions , 1974 .

[171]  W. Warwick,et al.  Evaluation of a cystic fibrosis screening system incorporating a miniature sweat stimulator and disposable chloride sensor. , 1986, Clinical chemistry.