Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation.

This work considers the approximation of the cardiac bidomain equations, either isolated or coupled with the torso, via first order semi-implicit time-marching schemes involving a fully decoupled computation of the unknown fields (ionic state, transmembrane potential, extracellular and torso potentials). For the isolated bidomain system, we show that the Gauss-Seidel and Jacobi like splittings do not compromise energy stability; they simply alter the energy norm. Within the framework of the numerical simulation of electrocardiograms (ECG), these bidomain splittings are combined with an explicit Robin-Robin treatment of the heart-torso coupling conditions. We show that the resulting schemes allow a fully decoupled (energy) stable computation of the heart and torso fields, under an additional hyperbolic-CFL like condition. The accuracy and convergence rate of the considered schemes are investigated numerically with a series of numerical experiments.

[1]  P. C. Franzone,et al.  A PARALLEL SOLVER FOR REACTION-DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY , 2004 .

[2]  Andrew J. Pullan,et al.  Mathematically Modelling the Electrical Activity of the Heart: From Cell to Body Surface and Back Again , 2005 .

[3]  B M Horácek,et al.  Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle. , 1991, Journal of electrocardiology.

[4]  Miguel A. Fernández,et al.  Numerical Simulation of the Electromechanical Activity of the Heart , 2009, FIMH.

[5]  G. Huiskamp,et al.  Simulation of depolarization in a membrane-equations-based model of the anisotropic ventricle , 1998, IEEE Transactions on Biomedical Engineering.

[6]  Miguel A. Fernández,et al.  Mathematical Modeling of Electrocardiograms: A Numerical Study , 2010, Annals of Biomedical Engineering.

[7]  A. Tveito,et al.  Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. , 2001, Mathematical biosciences.

[8]  A. J. Pullan,et al.  Mathematical models and numerical methods for the forward problem in cardiac electrophysiology , 2002 .

[9]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[10]  Pascal Frey,et al.  YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure , 2001 .

[11]  Marco Veneroni,et al.  Reaction–diffusion systems for the macroscopic bidomain model of the cardiac electric field , 2009 .

[12]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[13]  B. Taccardi,et al.  Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. , 2005, Mathematical biosciences.

[14]  A. van Oosterom,et al.  ECGSIM: an interactive tool for studying the genesis of QRST waveforms , 2004, Heart.

[15]  I R Efimov,et al.  Virtual Electrodes and Deexcitation: New Insights into Fibrillation Induction and Defibrillation , 2000, Journal of cardiovascular electrophysiology.

[16]  Martin Buist,et al.  Torso Coupling Techniques for the Forward Problem of Electrocardiography , 2002, Annals of Biomedical Engineering.

[17]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[18]  Y. Bourgault,et al.  Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology , 2009 .

[19]  Joakim Sundnes,et al.  Computing the electrical activity in the heart , 2006 .

[20]  A. Tveito,et al.  Modeling the electrical activity of the heart: A Bidomain Model of the ventricles embedded in a torso , 2002 .

[21]  D. Calvetti,et al.  Noninvasive Electrocardiographic Imaging (ECGI): Application of the Generalized Minimal Residual (GMRes) Method , 2003, Annals of Biomedical Engineering.

[22]  D. Schaeffer,et al.  A two-current model for the dynamics of cardiac membrane , 2003, Bulletin of mathematical biology.

[23]  J. Keener,et al.  A numerical method for the solution of the bidomain equations in cardiac tissue. , 1998, Chaos.

[24]  G Plank,et al.  Solvers for the cardiac bidomain equations. , 2008, Progress in biophysics and molecular biology.

[25]  Marc Ethier,et al.  Semi-Implicit Time-Discretization Schemes for the Bidomain Model , 2008, SIAM J. Numer. Anal..

[26]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[27]  Miguel A. Fernández,et al.  Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics , 2009, SIAM J. Sci. Comput..

[28]  J. Nenonen,et al.  Activation Dynamics in Anisotropic Cardiac Tissue via Decoupling , 2004, Annals of Biomedical Engineering.

[29]  Y. Bourgault,et al.  SIMULATION OF ELECTROPHYSIOLOGICAL WAVES WITH AN UNSTRUCTURED FINITE ELEMENT METHOD , 2003 .

[30]  K Skouibine,et al.  A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. , 2000, Mathematical biosciences.

[31]  A. Tveito,et al.  An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. , 2005, Mathematical biosciences.

[32]  Miguel A. Fernández,et al.  Towards the Numerical Simulation of Electrocardiograms , 2007, FIMH.

[33]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[34]  W. Krassowska,et al.  Effective boundary conditions for syncytial tissues , 1994, IEEE Transactions on Biomedical Engineering.

[35]  Mark Potse,et al.  A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart , 2006, IEEE Transactions on Biomedical Engineering.

[36]  B M Horácek,et al.  Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements. , 1991, Journal of electrocardiology.

[37]  Gulrajani Rm,et al.  Models of the electrical activity of the heart and computer simulation of the electrocardiogram. , 1988 .

[38]  D. Rose,et al.  Linear algebraic transformations of the bidomain equations: implications for numerical methods. , 1994, Mathematical biosciences.

[39]  Giuseppe Savaré,et al.  Degenerate Evolution Systems Modeling the Cardiac Electric Field at Micro- and Macroscopic Level , 2002 .

[40]  J. Craggs Applied Mathematical Sciences , 1973 .

[41]  A. Tveito,et al.  Numerical solution of the bidomain equations , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  Miguel A. Fernández,et al.  A Coupled System of PDEs and ODEs Arising in Electrocardiograms Modeling , 2010 .

[43]  Andrew J. Pullan,et al.  Solving the cardiac bidomain equations for discontinuous conductivities , 2006, IEEE Transactions on Biomedical Engineering.

[44]  V. Simoncini,et al.  Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process , 2002 .

[45]  Paul-Louis George,et al.  Fully automatic mesh generator for 3D domains of any shape , 1990, IMPACT Comput. Sci. Eng..

[46]  Mark Potse,et al.  Cardiac anisotropy in boundary-element models for the electrocardiogram , 2009, Medical & Biological Engineering & Computing.

[47]  M. Potse,et al.  ECG simulations with realistic human membrane, heart, and torso models , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[48]  Kenneth H. Karlsen,et al.  Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue , 2006, Networks Heterog. Media.

[49]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[50]  Xiao-Chuan Cai,et al.  A fully implicit parallel algorithm for simulating the non‐linear electrical activity of the heart , 2004, Numer. Linear Algebra Appl..

[51]  H. Stetter The defect correction principle and discretization methods , 1978 .

[52]  Leslie Tung,et al.  A bi-domain model for describing ischemic myocardial d-c potentials , 1978 .