Dynamics of high energy runaway electrons in the Frascati Tokamak Upgrade

The dynamics of high energy (up to 20 MeV) runaway electrons in the Frascati Tokamak Upgrade (FTU) is investigated using a gamma-ray spectrometer system which detects photons produced when runaway electrons interact with the plasma facing components [B. Esposito et al., Nucl. Instrum. Methods 476, 522 (2002)]. Runaway electrons are usually generated during the plasma current ramp-up, accelerated to MeV energies, and contained stably during the whole discharge time, which lasts for more than one second. This time is long enough for them to reach the limiting energy that results from the balance between acceleration in the electric field, collisions with the plasma particles and synchrotron radiation losses. The maximum energy inferred from the gamma spectra is shown to be in agreement with the runaway limiting energy predicted by a test particle description of the runaway dynamics [J. R. Martin-Solis et al., Phys. Plasmas 5, 2370 (1998)]. It is found that the runaway energy behavior during the discharge ...

[1]  Raul Sanchez,et al.  Runaway electron measurements in the JET tokamak , 1996 .

[2]  R. Jayakumar,et al.  Collisional avalanche exponentiation of runaway electrons in electrified plasmas , 1993 .

[3]  D. Mosher Interactions of relativistic electron beams with high atomic‐number plasmas , 1975 .

[4]  H. Knoepfel,et al.  Runaway electrons in toroidal discharges , 1979 .

[5]  P Barabaschi,et al.  Halo current, runaway electrons and disruption mitigation in ITER , 1997 .

[6]  Calibration of the neutron yield measurement system on FTU tokamak , 1990 .

[7]  B. Esposito,et al.  A gamma-ray spectrometer system for fusion applications , 2002 .

[8]  J. W. Connor,et al.  Relativistic limitations on runaway electrons , 1975 .

[9]  S. Podda,et al.  Improved calibration of the neutron yield measurement system on the FTU tokamak , 1992 .

[10]  P. Catto,et al.  Effect of drifts on the diffusion of runaway electrons in tokamak stochastic magnetic fields , 1992 .

[11]  Frederic Imbeaux,et al.  Tomography of the fast electron bremsstrahlung emission during lower hybrid current drive on TORE SUPRA , 1999 .

[12]  M. Rosenbluth,et al.  Electron heat transport in a tokamak with destroyed magnetic surfaces , 1978 .

[13]  H. Mynick,et al.  Transport of runaway and thermal electrons due to magnetic microturbulence , 1981 .

[14]  R. Kulsrud,et al.  Runaway electrons in a plasma , 1973 .

[15]  J. R. Martin-Solis,et al.  Interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening , 2002 .

[16]  J. Harris,et al.  RUNAWAY ELECTRON STUDIES IN THE ATF TORSATRON , 1991 .

[17]  N. Cardozo,et al.  Diffusion of runaway electrons in TEXTOR-94 , 1998 .

[18]  Jose Ramon Martin-Solis,et al.  Momentum–space structure of relativistic runaway electrons , 1998 .

[19]  J. W. Motz,et al.  Bremsstrahlung Cross-Section Formulas and Related Data , 1959 .

[20]  D. Moreau,et al.  Stochastic Instability of Relativistic Runaway Electrons Due to Lower Hybrid Waves , 1991 .