Statistical Inference for Bayesian Risk Minimization via Exponentially Tilted Empirical Likelihood
暂无分享,去创建一个
[1] Ryan Martin,et al. Gibbs posterior concentration rates under sub-exponential type losses , 2020, Bernoulli.
[2] O. Papaspiliopoulos. High-Dimensional Probability: An Introduction with Applications in Data Science , 2020 .
[3] G. A. Young,et al. High‐dimensional Statistics: A Non‐asymptotic Viewpoint, Martin J.Wainwright, Cambridge University Press, 2019, xvii 552 pages, £57.99, hardback ISBN: 978‐1‐1084‐9802‐9 , 2020, International Statistical Review.
[4] Ryan Martin,et al. Gibbs posterior inference on multivariate quantiles , 2020, Journal of Statistical Planning and Inference.
[5] Changbao Wu,et al. Bayesian empirical likelihood inference with complex survey data , 2019, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[6] Chengjian Sun,et al. Model-Free Unsupervised Learning for Optimization Problems with Constraints , 2019, 2019 25th Asia-Pacific Conference on Communications (APCC).
[7] Ryan Martin,et al. Empirical Priors for Prediction in Sparse High-dimensional Linear Regression , 2019, J. Mach. Learn. Res..
[8] Martin J. Wainwright,et al. High-Dimensional Statistics , 2019 .
[9] Benjamin Guedj,et al. A Primer on PAC-Bayesian Learning , 2019, ICML 2019.
[10] Suely Oliveira,et al. Smoothed Hinge Loss and ℓ1 Support Vector Machines , 2018, 2018 IEEE International Conference on Data Mining Workshops (ICDMW).
[11] Terrence J. Sejnowski,et al. Unsupervised Learning , 2018, Encyclopedia of GIS.
[12] Martin Raivc,et al. A multivariate Berry–Esseen theorem with explicit constants , 2018, Bernoulli.
[13] Yonina C. Eldar,et al. Sparse Nonlinear Regression: Parameter Estimation under Nonconvexity , 2016, ICML.
[14] Changbao Wu,et al. Calibration Weighting Methods for Complex Surveys , 2016 .
[15] Ryan Martin,et al. Calibrating general posterior credible regions , 2015, Biometrika.
[16] Thijs van Ommen,et al. Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It , 2014, 1412.3730.
[17] Stephen G. Walker,et al. Empirical Bayes posterior concentration in sparse high-dimensional linear models , 2014, 1406.7718.
[18] A. V. D. Vaart,et al. BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS , 2014, 1403.0735.
[19] Pier Giovanni Bissiri,et al. A general framework for updating belief distributions , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[20] R. Ramamoorthi,et al. Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density , 2013 .
[21] Nicholas G. Polson,et al. Data augmentation for support vector machines , 2011 .
[22] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[23] Sylvia Richardson,et al. Evolutionary Stochastic Search for Bayesian model exploration , 2010, 1002.2706.
[24] Michel Broniatowski,et al. Divergences and Duality for Estimation and Test under Moment Condition Models , 2010, 1002.0730.
[25] Noël Veraverbeke,et al. Empirical Likelihood for Non‐Smooth Criterion Functions , 2009 .
[26] T. Nummi. Introduction to Empirical Processes and Semiparametric Inference by Michael R. Kosorok , 2009 .
[27] Rahul Mukerjee,et al. Bayesian and frequentist confidence intervals arising from empirical-type likelihoods , 2008 .
[28] Pierre Alquier. PAC-Bayesian bounds for randomized empirical risk minimizers , 2007, 0712.1698.
[29] O. Catoni. PAC-BAYESIAN SUPERVISED CLASSIFICATION: The Thermodynamics of Statistical Learning , 2007, 0712.0248.
[30] J. Jurečková. Quantile Regression , 2006 .
[31] Susanne M. Schennach,et al. Accompanying document to "Point Estimation with Exponentially Tilted Empirical Likelihood" , 2005, math/0512181.
[32] T. Lancaster,et al. Bayesian Quantile Regression , 2005 .
[33] Julia Kastner,et al. Introduction to Robust Estimation and Hypothesis Testing , 2005 .
[34] J. S. Rao,et al. Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.
[35] Susanne M. Schennach,et al. Bayesian exponentially tilted empirical likelihood , 2005 .
[36] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[37] N. Lazar. Bayesian empirical likelihood , 2003 .
[38] V. Chernozhukov,et al. An MCMC Approach to Classical Estimation , 2002, 2301.07782.
[39] David A. McAllester. PAC-Bayesian model averaging , 1999, COLT '99.
[40] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[41] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[42] Gert Cauwenberghs,et al. A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization , 1992, NIPS.
[43] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[44] Vladimir Vapnik,et al. Principles of Risk Minimization for Learning Theory , 1991, NIPS.
[45] A. Owen. Empirical Likelihood Ratio Confidence Regions , 1990 .
[46] H. Robbins. A Stochastic Approximation Method , 1951 .
[47] Anna Simoni,et al. Online appendix to : Bayesian Estimation and Comparison of Moment Condition Models , 2017 .
[48] Jianqing Fan,et al. High-Dimensional Statistics , 2014 .
[49] Van Der Vaart,et al. UvA-DARE ( Digital Academic Repository ) The Bernstein-Von-Mises theorem under misspecification , 2012 .
[50] Evgueni A. Haroutunian,et al. Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.
[51] R. Koenker,et al. Regression Quantiles , 2007 .
[52] P. Dellaportas,et al. On Bayesian model and variable selection using MCMC , 2002, Stat. Comput..
[53] Wu. Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys , 2002 .
[54] Trevor Hastie,et al. Linear Methods for Classification , 2001 .
[55] W. Newey,et al. Large sample estimation and hypothesis testing , 1986 .
[56] B. D. Finetti,et al. Bayesian inference and decision techniques : essays in honor of Bruno de Finetti , 1986 .
[57] Peter J. Rousseeuw,et al. ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .
[58] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[59] Changbao Wu,et al. University of Waterloo Department of Statistics and Actuarial Science Bayesian Pseudo Empirical Likelihood Intervals for Complex Surveys Bayesian Pseudo Empirical Likelihood Intervals for Complex Surveys , 2022 .
[60] Joachim M. Buhmann,et al. Grosser Systeme Echtzeitoptimierung Schwerpunktprogramm Der Deutschen Forschungsgemeinschaft Empirical Risk Approximation: an Induction Principle for Unsupervised Learning , 2022 .