Support Recovery for Sparse Super-Resolution of Positive Measures
暂无分享,去创建一个
[1] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[2] Carlos Fernandez-Granda. Support detection in super-resolution , 2013, ArXiv.
[3] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[4] Adriaan van den Bos,et al. Resolution: a survey , 1997 .
[5] K. Bredies,et al. Inverse problems in spaces of measures , 2013 .
[6] Gabriel Peyré,et al. Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.
[7] Emmanuel J. Candès,et al. Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.
[8] Benjamin Recht,et al. Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.
[9] M. Vetterli,et al. Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.
[10] F. Gamboa,et al. Spike detection from inaccurate samplings , 2013, 1301.5873.
[11] Laurent Condat,et al. Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear Measurements , 2015 .
[12] Yohann de Castro,et al. Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.
[13] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[14] D. Donoho. Superresolution via sparsity constraints , 1992 .
[15] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[16] M. Viberg,et al. Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..
[17] J. Claerbout,et al. Robust Modeling With Erratic Data , 1973 .
[18] Laurent Demanet,et al. The recoverability limit for superresolution via sparsity , 2015, ArXiv.
[19] Emmanuel J. Candès,et al. Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..
[20] S. Levy,et al. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .
[21] Wenjing Liao,et al. MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.
[22] Laurent Condat,et al. Recovery of nonuniformdirac pulses from noisy linear measurements , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[23] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[24] F. Santosa,et al. Linear inversion of ban limit reflection seismograms , 1986 .