Support Recovery for Sparse Super-Resolution of Positive Measures

We study sparse spikes super-resolution over the space of Radon measures on $$\mathbb {R}$$R or $$\mathbb {T}$$T when the input measure is a finite sum of positive Dirac masses using the BLASSO convex program. We focus on the recovery properties of the support and the amplitudes of the initial measure in the presence of noise as a function of the minimum separation t of the input measure (the minimum distance between two spikes). We show that when $${w}/\lambda $$w/λ, $${w}/t^{2N-1}$$w/t2N-1 and $$\lambda /t^{2N-1}$$λ/t2N-1 are small enough (where $$\lambda $$λ is the regularization parameter, w the noise and N the number of spikes), which corresponds roughly to a sufficient signal-to-noise ratio and a noise level small enough with respect to the minimum separation, there exists a unique solution to the BLASSO program with exactly the same number of spikes as the original measure. We show that the amplitudes and positions of the spikes of the solution both converge toward those of the input measure when the noise and the regularization parameter drops to zero faster than $$t^{2N-1}$$t2N-1.

[1]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[2]  Carlos Fernandez-Granda Support detection in super-resolution , 2013, ArXiv.

[3]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[4]  Adriaan van den Bos,et al.  Resolution: a survey , 1997 .

[5]  K. Bredies,et al.  Inverse problems in spaces of measures , 2013 .

[6]  Gabriel Peyré,et al.  Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.

[7]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[8]  Benjamin Recht,et al.  Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.

[9]  M. Vetterli,et al.  Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.

[10]  F. Gamboa,et al.  Spike detection from inaccurate samplings , 2013, 1301.5873.

[11]  Laurent Condat,et al.  Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear Measurements , 2015 .

[12]  Yohann de Castro,et al.  Exact Reconstruction using Beurling Minimal Extrapolation , 2011, 1103.4951.

[13]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[14]  D. Donoho Superresolution via sparsity constraints , 1992 .

[15]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[16]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[17]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[18]  Laurent Demanet,et al.  The recoverability limit for superresolution via sparsity , 2015, ArXiv.

[19]  Emmanuel J. Candès,et al.  Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..

[20]  S. Levy,et al.  Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .

[21]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[22]  Laurent Condat,et al.  Recovery of nonuniformdirac pulses from noisy linear measurements , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[23]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[24]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .