Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading Process

A great deal of academic and theoretical work has been dedicated to optimal liquidation of large orders these last twenty years. The optimal split of an order through time (`optimal trade scheduling') and space (`smart order routing') is of high interest \rred{to} practitioners because of the increasing complexity of the market micro structure because of the evolution recently of regulations and liquidity worldwide. This paper translates into quantitative terms these regulatory issues and, more broadly, current market design. It relates the recent advances in optimal trading, order-book simulation and optimal liquidity to the reality of trading in an emerging global network of liquidity.

[1]  A. Shiryaev Essentials of stochastic finance , 1999 .

[2]  Thierry Foucault,et al.  Competition for Order Flow and Smart Order Routing Systems , 2006 .

[3]  L. Gillemot,et al.  Statistical theory of the continuous double auction , 2002, cond-mat/0210475.

[4]  Mathieu Rosenbaum,et al.  A New Approach for the Dynamics of Ultra-High-Frequency Data: The Model with Uncertainty Zones , 2011 .

[5]  A. Kyle,et al.  The Flash Crash: The Impact of High Frequency Trading on an Electronic Market , 2011 .

[6]  Gilles Pagès,et al.  Optimal Split of Orders Across Liquidity Pools: A Stochastic Algorithm Approach , 2009, SIAM J. Financial Math..

[7]  P. Doukhan Mixing: Properties and Examples , 1994 .

[8]  J. Jacod,et al.  La Variation Quadratique du Brownien en Pre'sence d''Erreurs d''Arrondi , 1996 .

[9]  Bruno Bouchard,et al.  Optimal Control of Trading Algorithms: A General Impulse Control Approach , 2011, SIAM J. Financial Math..

[10]  A. Menkveld High frequency trading and the new market makers , 2013 .

[11]  T. Ho,et al.  Optimal dealer pricing under transactions and return uncertainty , 1981 .

[12]  R. Almgren,et al.  Direct Estimation of Equity Market Impact , 2005 .

[13]  M. Hirsch,et al.  4. Monotone Dynamical Systems , 2005 .

[14]  F. Abergel,et al.  Econophysics review: II. Agent-based models , 2011 .

[15]  Mathieu Rosenbaum,et al.  On the Microstructural Hedging Error , 2010, SIAM J. Financial Math..

[16]  M. Mézard,et al.  Statistical Properties of Stock Order Books: Empirical Results and Models , 2002 .

[17]  Rama Cont,et al.  The Price Impact of Order Book Events , 2010, 1011.6402.

[18]  Jean Jacod,et al.  Volatility estimators for discretely sampled Lévy processes , 2007 .

[19]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[20]  V. Plerou,et al.  Institutional Investors and Stock Market Volatility , 2005 .

[21]  Patrick Hewlett Clustering of order arrivals , price impact and trade path optimisation , 2006 .

[22]  F. Lillo,et al.  Econophysics: Master curve for price-impact function , 2003, Nature.

[23]  G. Nigel Gilbert,et al.  Agent-Based Models , 2007 .

[24]  Rama Cont,et al.  Price Dynamics in a Markovian Limit Order Market , 2011, SIAM J. Financial Math..

[25]  Alexander Schied,et al.  Optimal execution strategies in limit order books with general shape functions , 2007, 0708.1756.

[26]  Olivier Guéant,et al.  Dealing with the Inventory Risk , 2011 .

[27]  Jean-Philippe Bouchaud,et al.  Relation between bid–ask spread, impact and volatility in order-driven markets , 2006, physics/0603084.

[28]  A. Kyle Continuous Auctions and Insider Trading , 1985 .

[29]  M. Avellaneda,et al.  High-frequency trading in a limit order book , 2008 .

[30]  Robert F. Engle,et al.  Measuring and Modeling Execution Cost and Risk , 2012 .

[31]  Fabian Muniesa,et al.  Des marchés comme algorithmes : sociologie de la cotation électronique à la Bourse de Paris , 2003 .

[32]  Steven E. Shreve,et al.  Optimal Execution in a General One-Sided Limit-Order Book , 2011, SIAM J. Financial Math..

[33]  H. Waelbroeck,et al.  Optimal Execution of Portfolio Transactions with Short‐Term Alpha , 2013 .

[34]  L. Glosten,et al.  Market Microstructure: A Survey of Microfoundations, Empirical Results, and Policy Implications , 2005 .

[35]  Asymptotic normality of randomly truncated stochastic algorithms , 2010, 1003.4183.

[36]  Alexander Schied,et al.  Dynamical Models of Market Impact and Algorithms for Order Execution , 2013 .

[37]  Jim Gatheral No-dynamic-arbitrage and market impact , 2009 .

[38]  Charles-Albert Lehalle Rigorous Strategic Trading: Balanced Portfolio and Mean-Reversion , 2009, The Journal of Trading.

[39]  Jeremy H. Large Measuring the resiliency of an electronic limit order book , 2007 .

[40]  Adverse Selection vs. Opportunistic Savings in Dark Aggregators , 2009, The Journal of Trading.

[41]  Kuzman Ganchev,et al.  Censored exploration and the dark pool problem , 2009, UAI.

[42]  N. Yoshida,et al.  On covariance estimation of non-synchronously observed diffusion processes , 2005 .

[43]  Giuseppe Nuti,et al.  Algorithmic Trading , 2011, Computer.

[44]  Kalman J. Cohen,et al.  Transaction Costs, Order Placement Strategy, and Existence of the Bid-Ask Spread , 1981, Journal of Political Economy.

[45]  Jean-Philippe Bouchaud,et al.  Relation between Bid-Ask Spread, Impact and Volatility in Double Auction Markets , 2006 .

[46]  Alexander Schied,et al.  Optimal Trade Execution and Absence of Price Manipulations in Limit Order Book Models , 2010, SIAM J. Financial Math..

[47]  P. Lions,et al.  Mean field games , 2007 .

[48]  Olivier Guéant,et al.  High-Frequency Simulations of an Order Book: a Two-scale Approach , 2011 .