Trace element composition of magnetite from the Xinqiao Fe–S(–Cu–Au) deposit, Tongling, Eastern China: constraints on fluid evolution and ore genesis

[1]  Zhongbo Wang,et al.  Comparison of detrital mineral compositions between stream sediments of the Yangtze River (Changjiang) and the Yellow River (Huanghe) and their provenance implication , 2019, China Geology.

[2]  Xian‐Hua Li,et al.  Multisourced metals enriched by magmatic-hydrothermal fluids in stratabound deposits of the Middle–Lower Yangtze River metallogenic belt, China , 2018 .

[3]  Xiaoqing Zhu,et al.  In situ LA‐ICP‐MS trace element analysis of magnetite from the late Neoarchean Gongchangling BIFs, NE China: Constraints on the genesis of high‐grade iron ore , 2018 .

[4]  G. Beaudoin,et al.  Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China: constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements , 2018, Mineralium Deposita.

[5]  Rongqing Zhang,et al.  Dating Ore Deposit Using Garnet U–Pb Geochronology: Example from the Xinqiao Cu–S–Fe–Au Deposit, Eastern China , 2018 .

[6]  Yu Zhang,et al.  A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes , 2017 .

[7]  T. Lacourse,et al.  Magnetite as an Indicator Mineral in the Exploration of Porphyry Deposits: A Case Study in Till near the Mount Polley Cu-Au Deposit, British Columbia, Canada , 2017 .

[8]  Yu Zhang,et al.  LA-ICP-MS trace element geochemistry of garnets: Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu–S–Fe–Au deposit, eastern China , 2017 .

[9]  Yu Zhang,et al.  Genesis of the Xinqiao Cu–S–Fe–Au deposit in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China: Constraints from U–Pb–Hf, Rb–Sr, S, and Pb isotopes , 2017 .

[10]  Mingyue Hu,et al.  In–situ LA–ICP–MS trace elemental analyzes of magnetite: The Tieshan skarn Fe–Cu deposit, Eastern China , 2017 .

[11]  Jian-wei Li,et al.  An Early Cretaceous carbonate replacement origin for the Xinqiao stratabound massive sulfide deposit, Middle-Lower Yangtze Metallogenic Belt, China , 2017 .

[12]  R. Cawthorn.,et al.  In situ LA–ICP-MS and EPMA trace element characterization of Fe–Ti oxides from the phoscorite–carbonatite association at Phalaborwa, South Africa , 2017, Mineralium Deposita.

[13]  Charley J. Duran,et al.  Trace element distribution in primary sulfides and Fe–Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Constraints on processes controlling the composition of the ore and the use of pentlandite compositions in exploration , 2016 .

[14]  Bin Chen,et al.  Important role of magma mixing in generating the Mesozoic monzodioritic–granodioritic intrusions related to Cu mineralization, Tongling, East China: Evidence from petrological and in situ Sr-Hf isotopic data , 2016 .

[15]  Xiao-Wen Huang,et al.  In-situ LA–ICP–MS trace elements analysis of magnetite: The Fenghuangshan Cu–Fe–Au deposit, Tongling, Eastern China , 2016 .

[16]  T. Lacourse,et al.  Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia, Canada , 2016 .

[17]  E. Grunsky,et al.  Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits , 2016 .

[18]  M. Reich,et al.  Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes , 2015 .

[19]  M. Reich,et al.  Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions , 2015 .

[20]  Mei-Fu Zhou,et al.  In-situ LA-ICP-MS trace elemental analyses of magnetite and Re–Os dating of pyrite: The Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China , 2015 .

[21]  Mei-Fu Zhou,et al.  In-situ LA–ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China , 2015 .

[22]  Mei-Fu Zhou,et al.  In-situ LA–ICP-MS trace elemental analyses of magnetite: The late Palaeoproterozoic Sokoman Iron Formation in the Labrador Trough, Canada , 2015 .

[23]  Mei-Fu Zhou,et al.  In-situ LA-ICP-MS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China , 2015 .

[24]  Ping Liu,et al.  In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe–Ti–(V) oxide-bearing mafic–ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China , 2015 .

[25]  Mei-Fu Zhou,et al.  In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India , 2015 .

[26]  Mei-Fu Zhou,et al.  Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China , 2015, Mineralium Deposita.

[27]  F. Yuan,et al.  Petrogenesis of Dongguashan skarn-porphyry Cu-Au deposit related intrusion in the Tongling district, eastern China: geochronological, mineralogical, geochemical and Hf isotopic evidence , 2015 .

[28]  G. Beaudoin,et al.  Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS , 2015, Mineralium Deposita.

[29]  P. Nadoll,et al.  Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States , 2015, Mineralium Deposita.

[30]  P. Acosta-Góngora,et al.  Trace Element Geochemistry of Magnetite and Its Relationship to Cu-Bi-Co-Au-Ag-U-W Mineralization in the Great Bear Magmatic Zone, NWT, Canada , 2014 .

[31]  G. Beaudoin,et al.  Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration , 2014 .

[32]  D. French,et al.  The chemistry of hydrothermal magnetite: A review , 2014 .

[33]  G. Beaudoin,et al.  Trace elements in magnetite as petrogenetic indicators , 2014, Mineralium Deposita.

[34]  Xiao-Wen Huang,et al.  Trace Element Geochemistry of Magnetite from the Fe(‐Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China , 2014 .

[35]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[36]  C. Wang,et al.  Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide , 2013 .

[37]  Mei-Fu Zhou,et al.  Re–Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic–hydrothermal Fe deposit, NW China , 2013, Mineralium Deposita.

[38]  G. Beaudoin,et al.  Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination , 2012 .

[39]  S. Hagemann,et al.  Geochemical Evolution of the Banded Iron Formation-Hosted High-Grade Iron Ore System in the Koolyanobbing Greenstone Belt, Western Australia , 2012 .

[40]  F. Pirajno,et al.  A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China , 2011 .

[41]  Weimin Guo,et al.  Re-Os isotope dating of pyrite from the footwall mineralization zone of the Xinqiao deposit, Tongling, Anhui Province: Geochronological evidence for submarine exhalative sedimentation , 2011 .

[42]  P. Nadoll,et al.  LA-ICP-MS of magnetite: methods and reference materials , 2011 .

[43]  G. Beaudoin,et al.  Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types , 2011 .

[44]  J. Dilles,et al.  From Source to Sinks in Auriferous Magmatic-Hydrothermal Porphyry and Epithermal Deposits , 2009 .

[45]  Jianguo Du,et al.  Geochronological and geochemical constraints on formation of the Tongling metal deposits, middle Yangtze metallogenic belt, east‐central China , 2009 .

[46]  Mao Jing,et al.  Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt , 2009 .

[47]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[48]  L. Jian A metallogenic model for the Dongguashan Cu-Au deposit of Tongling,Anhui Province , 2008 .

[49]  Shao Yongjun RELATIONS BETWEEN GRANITE AND MINERALIZATION IN THE FENGHUANGSHAN COPPER-POLYMETALLIC DEPOSIT AT TONGLING,ANHUI PROVINCE , 2008 .

[50]  Hou Zengqian,et al.  Geological Fluid Mapping in the Tongling Area: Implications for the Paleozoic Submarine Hydrothermal System in the Middle‐Lower Yangtze Metallogenic Belt, East China , 2007 .

[51]  Z. Wen A preliminary discussion on genesis of Xinqiao S-Fe orefield , 2007 .

[52]  T. Zhou,et al.  Molybdenite Re–Os and albite 40Ar/39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications , 2006 .

[53]  W. Griffin,et al.  U-Pb dating of zircons from quartz diorite and its enclaves at Tongguanshan in Anhui and its petrogenetic implication , 2004 .

[54]  Michael J Carew,et al.  Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia , 2004 .

[55]  Li Dongxu,et al.  Study of the Emplacement Mechanism of the Fenghuangshan Granite Pluton and Related Cu‐Au Mineralization in Tongling, Anhui Province , 2004 .

[56]  Wang Yan-bin,et al.  SHRIMP U-Pb geochronology of the Xinqiao Cu-S-Fe-Au deposit in the Tongling ore district, Anhui , 2004 .

[57]  Zhang Da XINQIAO IRON-DEPOSIT FIELD IN TONGLING, ANHUI ——GEOLOGIC AND GEOCHEMICAL CHARACTERISTICS AND GENESIS , 2004 .

[58]  Gu Lian-xin New Discussion on the South China-Type Massive Sulphide Deposits Formed on Continental Crust , 2003 .

[59]  M. Toplis,et al.  An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium , 2002 .

[60]  G. Xu,et al.  The Xinqiao Cu–S–Fe–Au deposit in the Tongling mineral district, China: synorogenic remobilization of a stratiform sulfide deposit , 2001 .

[61]  N. Pei DISCUSSION OF COMPARISON OF METALLOGENY FOR SEDEX AND SEDIMENTARY-REWORK BASE METAL DEPOSITS , 2000 .

[62]  Yuanming Pan,et al.  The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits , 1999 .

[63]  L. Meinert Skarns and Skarn Deposits , 1992 .

[64]  D. Lindsley,et al.  Occurrence of iron-titanium oxides in igneous rocks , 1991 .

[65]  E. Ilton,et al.  Base metal exchange between magnetite and a chloride-rich hydrothermal fluid☆ , 1989 .

[66]  J. Middelburg,et al.  Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks , 1988 .

[67]  P. Seccombe,et al.  Trace element distribution, Co:Ni ratios and genesis of the big cadia iron-copper deposit, new south wales, australia , 1987 .

[68]  C. R. Knowles,et al.  Phase relations in the systems PbS-Sb 2 S 3 -Bi 2 S 3 and PbS-FeS-Sb 2 S 3 -Bi 2 S 3 , 1980 .

[69]  J. Winchester,et al.  Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements , 1978 .

[70]  J. Freedman Trace-Element Geochemistry. , 1977 .

[71]  B. Gulson Exploration and mapping around a base metal sulphide deposit using trace lead isotopes , 1976 .

[72]  Julian A. Pearce,et al.  Tectonic setting of basic volcanic rocks determined using trace element analyses , 1973 .

[73]  G. Michard,et al.  Comportement géochimique des éléments métalliques en milieu réducteur et diagrammes (log S, pH) , 1969 .

[74]  W. L. McIntire Trace element partition coefficients—a review of theory and applications to geology , 1963 .