22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

[1]  H. Fujiwara,et al.  Hydrogen-doped In2O3 as High-mobility Transparent Conductive Oxide , 2007 .

[2]  Yongli Gao,et al.  Effects of exposure and air annealing on MoOx thin films , 2012 .

[3]  C. Ballif,et al.  Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering , 2012 .

[4]  B. Rech,et al.  p-type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40 mA/cm2 , 2015 .

[5]  Wolfgang Kowalsky,et al.  The Role of Transition Metal Oxides in Charge‐Generation Layers for Stacked Organic Light‐Emitting Diodes , 2010 .

[6]  F. Smole,et al.  Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells , 2014 .

[7]  M. Hermle,et al.  Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells , 2015 .

[8]  C. Ballif,et al.  Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment , 2011 .

[9]  C. Ballif,et al.  Properties of interfaces in amorphous/crystalline silicon heterojunctions , 2010 .

[10]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[11]  C. Ballif,et al.  Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors , 2013, IEEE Journal of Photovoltaics.

[12]  Shui-Tong Lee,et al.  13.8% Efficiency Hybrid Si/Organic Heterojunction Solar Cells with MoO3 Film as Antireflection and Inversion Induced Layer , 2014, Advanced materials.

[13]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[14]  K. Lim,et al.  Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide , 2011 .

[15]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[16]  L. Kranz,et al.  Development of MoOx thin films as back contact buffer for CdTe solar cells in substrate configuration , 2013 .

[17]  M. Kondo,et al.  Nature of doped a-Si:H / c-Si interface recombination , 2009 .

[18]  El Mahdi El Mhamdi,et al.  Is light-induced degradation of a-Si:H/c-Si interfaces reversible? , 2014 .

[19]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[20]  C. Ballif,et al.  Current Losses at the Front of Silicon Heterojunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[21]  D. Pysch,et al.  Amorphous silicon carbide heterojunction solar cells on p-type substrates , 2011 .

[22]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advanced materials.

[23]  U. Rau,et al.  Optimized amorphous silicon oxide buffer layers for silicon heterojunction solar cells with microcrystalline silicon oxide contact layers , 2013 .

[24]  C. Ballif,et al.  Silicon Heterojunction Solar Cells With Copper-Plated Grid Electrodes: Status and Comparison With Silver Thick-Film Techniques , 2014, IEEE Journal of Photovoltaics.

[25]  Po-Tsung Hsieh,et al.  Post-annealing effect upon optical properties of electron beam evaporated molybdenum oxide thin films , 2009 .

[26]  Franky So,et al.  Metal oxides for interface engineering in polymer solar cells , 2012 .

[27]  C. Ballif,et al.  Stretched-exponential a-Si:H∕c-Si interface recombination decay , 2008 .

[28]  C. Battaglia,et al.  Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells , 2014 .

[29]  T. He,et al.  Photochromism of molybdenum oxide , 2003 .

[30]  H. Fujiwara,et al.  Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells , 2007 .

[31]  Wolfgang Kowalsky,et al.  Transparent Inverted Organic Light‐Emitting Diodes with a Tungsten Oxide Buffer Layer , 2008 .

[32]  David G Lidzey,et al.  The Influence of MoOx Anode Stoicheometry on the Performance of Bulk Heterojunction Polymer Solar Cells , 2013 .

[33]  C. Battaglia,et al.  Silicon heterojunction solar cell with passivated hole selective MoOx contact , 2014 .

[34]  K. Lim,et al.  Transition metal oxide window layer in thin film amorphous silicon solar cells , 2014 .

[35]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[36]  Christophe Ballif,et al.  Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells , 2013 .

[37]  J. Luther,et al.  Origin of Hole Selectivity and the Role of Defects in Low-Temperature Solution-Processed Molybdenum Oxide Interfacial Layer for Organic Solar Cells , 2012 .

[38]  C. Battaglia,et al.  Hole selective MoOx contact for silicon solar cells. , 2014, Nano letters.

[39]  Armin G. Aberle,et al.  Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors , 1999 .

[40]  C. Ballif,et al.  >21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared , 2013, IEEE Journal of Photovoltaics.

[41]  C. Ballif,et al.  Back-Contacted Silicon Heterojunction Solar Cells With Efficiency >21% , 2014, IEEE Journal of Photovoltaics.

[42]  C. Battaglia,et al.  Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells , 2013 .

[43]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[44]  C. Ballif,et al.  Amorphous/crystalline silicon interface defects induced by hydrogen plasma treatments , 2013 .

[45]  M. Hermle,et al.  Numerical Analysis of Electrical TCO / a-Si:H(p) Contact Properties for Silicon Heterojunction Solar Cells , 2013 .

[46]  Doohyun Kim,et al.  The effect of Ar plasma bombardment upon physical property of tungsten oxide thin film in inverted top-emitting organic light-emitting diodes , 2011 .

[47]  Christophe Ballif,et al.  Low-Temperature High-Mobility Amorphous IZO for Silicon Heterojunction Solar Cells , 2015, IEEE Journal of Photovoltaics.

[48]  C. Ballif,et al.  The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality , 2010 .