An upper bound on the P3-Radon number

The generalization of classical results about convex sets in R n to abstract convexity spaces, defined by sets of paths in graphs, leads to many challenging structural and algorithmic problems. Here we study the Radon number for the P 3 -convexity on graphs.A set R of vertices of a graph G is P 3 -convex if no vertex in V ( G ) ? R has two neighbours in R . The P 3 -convex hull of a set of vertices is the smallest P 3 -convex set containing it. The P 3 -Radon number r ( G ) of a graph G is the smallest integer r such that every set R of r vertices of G has a partition R = R 1 ? R 2 such that the P 3 -convex hulls of R 1 and R 2 intersect. We prove that r ( G ) ? 2 3 ( n ( G ) + 1 ) + 1 for every connected graph G and characterize all extremal graphs.

[1]  Dieter Rautenbach,et al.  On finite convexity spaces induced by sets of paths in graphs , 2011, Discret. Math..

[2]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[3]  Robert E. Jamison-Waldner PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .

[4]  Manoj Changat,et al.  On triangle path convexity in graphs , 1999, Discret. Math..

[5]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[6]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[7]  E. C. Milner,et al.  Some remarks on simple tournaments , 1972 .

[8]  Jayme Luiz Szwarcfiter,et al.  On the Carathéodory Number for the Convexity of Paths of Order Three , 2012, SIAM J. Discret. Math..

[9]  Hans-Jürgen Bandelt,et al.  A Radon theorem for Helly graphs , 1989 .

[10]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[11]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[12]  Jürgen Eckhoff,et al.  The partition conjecture , 2000, Discrete Mathematics.

[13]  Marty J. Wolf,et al.  On two-path convexity in multipartite tournaments , 2008, Eur. J. Comb..

[14]  John W. Moon,et al.  Embedding tournaments in simple tournaments , 1972, Discret. Math..

[15]  Jayme Luiz Szwarcfiter,et al.  On the Carathéodory number of interval and graph convexities , 2013, Theor. Comput. Sci..

[16]  Gary Chartrand,et al.  Convex sets in graphs , 1999 .

[17]  Jayme Luiz Szwarcfiter,et al.  Irreversible conversion of graphs , 2011, Theor. Comput. Sci..

[18]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[19]  Fred S. Roberts,et al.  Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion , 2009, Discret. Appl. Math..

[20]  Odile Favaron,et al.  k-Domination and k-Independence in Graphs: A Survey , 2012, Graphs Comb..

[21]  Sandi Klavzar,et al.  The All-Paths Transit Function of a Graph , 2001 .

[22]  Jayme Luiz Szwarcfiter,et al.  Algorithmic and structural aspects of the P3-Radon number , 2013, Ann. Oper. Res..