An upper bound on the P3-Radon number
暂无分享,去创建一个
Jayme Luiz Szwarcfiter | Dieter Rautenbach | Mitre Costa Dourado | Vinícius Fernandes dos Santos | Philipp Matthias Schäfer | Alexandre Toman | D. Rautenbach | M. C. Dourado | J. Szwarcfiter | V. F. D. Santos | Alexandre Toman | P. M. Schäfer
[1] Dieter Rautenbach,et al. On finite convexity spaces induced by sets of paths in graphs , 2011, Discret. Math..
[2] J. Eckhoff. Helly, Radon, and Carathéodory Type Theorems , 1993 .
[3] Robert E. Jamison-Waldner. PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .
[4] Manoj Changat,et al. On triangle path convexity in graphs , 1999, Discret. Math..
[5] M. Farber,et al. Convexity in graphs and hypergraphs , 1986 .
[6] Van de M. L. J. Vel. Theory of convex structures , 1993 .
[7] E. C. Milner,et al. Some remarks on simple tournaments , 1972 .
[8] Jayme Luiz Szwarcfiter,et al. On the Carathéodory Number for the Convexity of Paths of Order Three , 2012, SIAM J. Discret. Math..
[9] Hans-Jürgen Bandelt,et al. A Radon theorem for Helly graphs , 1989 .
[10] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[11] Pierre Duchet,et al. Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.
[12] Jürgen Eckhoff,et al. The partition conjecture , 2000, Discrete Mathematics.
[13] Marty J. Wolf,et al. On two-path convexity in multipartite tournaments , 2008, Eur. J. Comb..
[14] John W. Moon,et al. Embedding tournaments in simple tournaments , 1972, Discret. Math..
[15] Jayme Luiz Szwarcfiter,et al. On the Carathéodory number of interval and graph convexities , 2013, Theor. Comput. Sci..
[16] Gary Chartrand,et al. Convex sets in graphs , 1999 .
[17] Jayme Luiz Szwarcfiter,et al. Irreversible conversion of graphs , 2011, Theor. Comput. Sci..
[18] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[19] Fred S. Roberts,et al. Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion , 2009, Discret. Appl. Math..
[20] Odile Favaron,et al. k-Domination and k-Independence in Graphs: A Survey , 2012, Graphs Comb..
[21] Sandi Klavzar,et al. The All-Paths Transit Function of a Graph , 2001 .
[22] Jayme Luiz Szwarcfiter,et al. Algorithmic and structural aspects of the P3-Radon number , 2013, Ann. Oper. Res..