On percolation and -hardness

We consider the robustness of computational hardness of problems whose input is obtained by applying independent random deletions to worst-case instances. For some classical NPhard problems on graphs, such as Coloring, Vertex-Cover, and Hamiltonicity, we examine the complexity of these problems when edges (or vertices) of an arbitrary graph are deleted independently with probability 1−p > 0. We prove that for n-vertex graphs, these problems remain as hard as in the worst-case, as long as p > 1 n1− for arbitrary ∈ (0, 1), unless NP ⊆ BPP. We also prove hardness results for Constraint Satisfaction Problems, where random deletions are applied to clauses or variables, as well as the Subset-Sum problem, where items of a given instance are deleted at random. ∗Department of Computer Science, Cornell University, Ithaca, NY, USA. Email: daniel.reichman@gmail.com. Supported in part by NSF grants IIS-0911036 and CCF-1214844, AFOSR grant FA9550-08-1-0266, and ARO grant W911NF-14-1-0017 †Courant Institute of Mathematical Sciences, New York University. Research supported by NSF grants CCF 1422159, 1061938, 0832795 and Simons Collaboration on Algorithms and Geometry grant.

[1]  Yuval Rabani,et al.  Allocating Bandwidth for Bursty Connections , 2000, SIAM J. Comput..

[2]  Colin McDiarmid,et al.  Algorithmic theory of random graphs , 1997 .

[3]  Tomasz Łuczak,et al.  Size and connectivity of the k-core of a random graph , 1991 .

[4]  Béla Bollobás,et al.  Random Graphs , 1985 .

[5]  Irit Dinur,et al.  On the Conditional Hardness of Coloring a 4-Colorable Graph with Super-Constant Number of Colors , 2010, APPROX-RANDOM.

[6]  Nir Ailon,et al.  Aggregating inconsistent information: Ranking and clustering , 2008 .

[7]  Amin Coja-Oghlan,et al.  On independent sets in random graphs , 2010, SODA '11.

[8]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[9]  Heiko Röglin,et al.  Smoothed Analysis of Local Search for the Maximum-Cut Problem , 2017, ACM Trans. Algorithms.

[10]  Elchanan Mossel,et al.  Conditional Hardness for Approximate Coloring , 2009, SIAM J. Comput..

[11]  David Gamarnik,et al.  PTAS for maximum weight independent set problem with random weights in bounded degree graphs , 2010, SODA '10.

[12]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[13]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[14]  Uriel Feige,et al.  Resolution lower bounds for the weak pigeon hole principle , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[15]  T. Sanders On the Bogolyubov–Ruzsa lemma , 2010, 1011.0107.

[16]  D. Spielman,et al.  Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time , 2004 .

[17]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[18]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[19]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[20]  Uriel Feige,et al.  Heuristics for Semirandom Graph Problems , 2001, J. Comput. Syst. Sci..

[21]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[22]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[23]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[24]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[25]  David R. Karger,et al.  Random sampling in cut, flow, and network design problems , 1994, STOC '94.

[26]  Noga Alon,et al.  Percolation on finite graphs and isoperimetric inequalities , 2004 .

[27]  Asaf Ferber,et al.  Packing, counting and covering Hamilton cycles in random directed graphs , 2015, Electron. Notes Discret. Math..

[28]  Benjamin Rossman,et al.  The Monotone Complexity of k-clique on Random Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[29]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[30]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[31]  Ludek Kucera,et al.  The Greedy Coloring Is a Bad Probabilistic Algorithm , 1991, J. Algorithms.

[32]  Alan M. Frieze,et al.  On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.

[33]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[34]  S. Kak Information, physics, and computation , 1996 .

[35]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[36]  Luca Trevisan,et al.  On Weighted vs Unweighted Versions of Combinatorial Optimization Problems , 2001, Inf. Comput..

[37]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[38]  Jan Vondrák,et al.  Adaptivity and approximation for stochastic packing problems , 2005, SODA '05.

[39]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[40]  Sangxia Huang,et al.  Improved Hardness of Approximating Chromatic Number , 2013, APPROX-RANDOM.

[41]  David Steurer,et al.  Subsampling mathematical relaxations and average-case complexity , 2009, SODA '11.

[42]  C. Liverani Decay of correlations , 1995 .

[43]  Subhash Khot,et al.  Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[44]  Shang-Hua Teng,et al.  Smoothed analysis: an attempt to explain the behavior of algorithms in practice , 2009, CACM.

[45]  David S. Johnson,et al.  The Complexity of Near-Optimal Graph Coloring , 1976, J. ACM.

[46]  Uriel Feige,et al.  Recoverable values for independent sets , 2015, Random Struct. Algorithms.

[47]  Subhash Khot,et al.  Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[48]  Benny Sudakov,et al.  The phase transition in random graphs: A simple proof , 2012, Random Struct. Algorithms.

[49]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[50]  Marek Karpinski,et al.  Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems , 1999, J. Comput. Syst. Sci..

[51]  Elchanan Mossel,et al.  Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality , 2004, math/0410560.

[52]  Alan M. Frieze,et al.  The emergence of a giant component in random subgraphs of pseudo‐random graphs , 2004, Random Struct. Algorithms.