Selective ion passage through functionalized graphene nanopores.

We design functionalized nanopores in graphene monolayers and show by molecular dynamics simulations that they provide highly selective passage of hydrated ions. Only ions that can be partly stripped of their hydration shells can pass through these ultrasmall pores with diameters of ∼5 A. For example, a fluorine−nitrogen-terminated pore allows the passage of Li+, Na+, and K+ cations with the ratio 9:14:33, but it blocks the passage of anions. The hydrogen-terminated pore allows the passage of F−, Cl−, and Br− anions with the ratio 0:17:33, but it blocks the passage of cations. These nanopores could have potential applications in molecular separation, desalination, and energy storage systems.

[1]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[2]  W. Auwärter,et al.  Boron Nitride Nanomesh , 2004, Science.

[3]  D. Do,et al.  Hydrothermally Robust Molecular Sieve Silica for Wet Gas Separation , 2006 .

[4]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[5]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[6]  C. Stampfer,et al.  Tunable Coulomb blockade in nanostructured graphene , 2007, 0709.3799.

[7]  M. Gharib,et al.  Flow conveying and diagnosis with carbon nanotube arrays , 2006 .

[8]  P. Král,et al.  Optimal atomistic modifications of material surfaces: design of selective nesting sites for biomolecules. , 2007, Small.

[9]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.

[10]  T. Gaborski,et al.  Charge- and size-based separation of macromolecules using ultrathin silicon membranes , 2007, Nature.

[11]  P. Král,et al.  Coulombic dragging of molecules on surfaces induced by separately flowing liquids. , 2006, Journal of the American Chemical Society.

[12]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[13]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[14]  R. Bell,et al.  Anion-promoted cation motion and conduction in zeolites. , 2006, Journal of the American Chemical Society.

[15]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[16]  D. Clapham,et al.  Ion channels--basic science and clinical disease. , 1997, The New England journal of medicine.

[17]  M. Sokabe,et al.  Artificial non-peptide single ion channels , 1992 .

[18]  Dean J Tantillo,et al.  Theoretical studies on farnesyl cation cyclization: pathways to pentalenene. , 2006, Journal of the American Chemical Society.

[19]  O. Urakawa,et al.  Small - , 2007 .

[20]  N. Quirke,et al.  Fluid flow in carbon nanotubes and nanopipes. , 2007, Nature nanotechnology.

[21]  T. Ohta,et al.  Controlling the Electronic Structure of Bilayer Graphene , 2006, Science.

[22]  K. Schwarz,et al.  Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. , 2007, Physical review letters.

[23]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[24]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[25]  A. Ismail,et al.  Fabrication of carbon membranes for gas separation--a review , 2004 .

[26]  D. Sholl,et al.  Rapid transport of gases in carbon nanotubes. , 2002, Physical review letters.

[27]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[28]  C. Jameson,et al.  Ion permeation dynamics in carbon nanotubes. , 2006, The Journal of chemical physics.

[29]  Klaus Schulten,et al.  Mechanism of gating and ion conductivity of a possible tetrameric pore in aquaporin-1. , 2006, Structure.

[30]  Nikhil Koratkar,et al.  Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. , 2007, Nano letters.

[31]  Matthias Schreck,et al.  Boron nitride nanomesh: functionality from a corrugated monolayer. , 2007, Angewandte Chemie.

[32]  E. Hoek,et al.  Crossflow membrane filtration of interacting nanoparticle suspensions , 2006 .

[33]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.