The KM3NeT potential for the next core-collapse supernova observation with neutrinos

H.Branzacs | L. S. Miranda | A. Heijboer | I. Palma | F. Garufi | G. Anton | G. Wasseige | U. Katz | D. Eijk | A. Sharma | Y. Tayalati | F. Simeone | V. Chiarella | C. Markou | M. Palma | K. Mannheim | A. Capone | S. Tingay | P. Coyle | M. Circella | B. D. Martino | G. Cuttone | A. Rovelli | F. Filippini | T. Gál | A. Coleiro | D. Dornic | V. Kulikovskiy | M. Lamoureux | M. Lincetto | M. Molla | P. Jong | B. Baret | S. Ardid | D. Santonocito | G. Miele | F. Marzaioli | R. Dallier | S. Zavatarelli | S. Navas | G. Riccobene | J. Brunner | V. Bertin | J. Coelho | F. Raffaelli | R. Lahmann | H. Hamdaoui | P. Kooijman | D. Grasso | M. Perrin-Terrin | I. Sgura | C. Pastore | P. Mijakowski | C. Bozza | G. Grella | S. Stellacci | A. Ambrosone | A. Marinelli | S. Razzaque | S. Biagi | R. Bruijn | F. Ameli | M. Anghinolfi | M. Bouwhuis | R. Coniglione | C. Distefano | K. Graf | M. Jong | A. Kouchner | A. Margiotta | E. Migneco | M. Morganti | M. Musumeci | R. Papaleo | P. Piattelli | V. Popa | T. Pradier | N. Randazzo | D. Real | P. Sapienza | R. Shanidze | M. Spurio | M. Taiuti | E. Wolf | J. Zornoza | T. Chiarusi | E. Leonora | V. Elewyck | M. Kadler | A. Albert | R. Cocimano | J. Busto | E. Tzamariudaki | T. Eberl | A. Santangelo | A. Martini | J. Martínez-Mora | M. Ardid | O. Kalekin | V. Espinosa | E. Berbee | C. Donzaud | H. Haren | G. Larosa | A. Orlando | D. Samtleben | A. Chen | A. Creusot | D. Drouhin | P. Migliozzi | C. Mollo | J. Schnabel | D. Vivolo | B. Caiffi | F. Huang | E. Buis | M. Boettcher | S. Rivoire | G. Vasileiadis | M. André | S. Celli | L. Fusco | G. Illuminati | C. James | M. Kreter | K. Melis | A. Moussa | C. Pellegrino | M. Sanguineti | D. Calvo | G. Puhlhofer | D. Elsaesser | S. Gozzini | F. Greus | M. Schneider | M. Filipovi'c | S. L. Stum | H. Schutte | N. Żywucka | O. Pisanti | J. Schumann | L. Martin | J. Aublin | J. Hern'andez-Rey | J. Z'uniga | J. Wilms | P. Castaldi | F. Benfenati | S. Mastroianni | Z. Aly | KM3NeT Collaboration S. Aiello | S. A. Garre | G. Androulakis | C. Bagatelas | S. B. Pree | M. Bendahman | A. Berg | M. B. Cabo | J. Boumaaza | M. Bouta | R. Buompane | V. Carretero | M. Chabab | N. Chau | S. Cherubini | D. Diego-Tortosa | A. Domi | M. Dorr | A. Eddyamoui | T. V. Eeden | I. Bojaddaini | A. Enzenhofer | P. Fermani | G. Ferrara | Y. Gatelet | N. Geisselbrecht | E. Giorgio | R. Gracia | D. Guderian | C. Guidi | J. Haefner | A. Hekalo | L. Hennig | J. Hofestadt | W. I. Ibnsalih | B. Jung | P. Kalaczy'nski | N. R. K. Chowdhury | G. Kistauri | F. V. D. Knaap | R. Breton | O. Leonardi | F. Leone | N. Lessing | M. Clark | T. Lipreau | F. Longhitano | D. López-Coto | L. Maderer | J. Ma'nczak | M. Moser | R. Muller | L. Nauta | C. Nicolau | B. Fearraigh | M. O'Sullivan | J. P. Gonz'alez | G. Papalashvili | A. Puaun | G. E. Puavualacs | V. Pestel | C. Pieterse | C. Poirè | S. Pulvirenti | S. Reck | A. Romanov | A. S. Losa | J. Seneca | A. Sinopoulou | B. Spisso | D. Stavropoulos | H. Thiersen | V. Tsourapis | D. Tzanetatos | G. Vannoye | F. Versari | S. Viola | R. Wojaczy'nski | A. Zegarelli | D. Zito | M. Anguita | M. Bissinger | M. Marino | A. Díaz | O. Gabella | A. G. Soto | L. Gialanella | G. Levi | S. Mazzou | Mukharbek Organokov | G. Passaro | K. Pikounis | O. Rabyang | E. Tenllado | T. Thakore | T. Unbehaun | G. Vermarien | M. C. Molla | T. V. Eeden | S. L. Stum | J. Gonz'alez | J. P. Gonz'alez | C. James | E. Wolf

[1]  L. V. Nguyen,et al.  IceCube-Gen2: the window to the extreme Universe , 2020, Journal of Physics G: Nuclear and Particle Physics.

[2]  J. I. Crespo-Anadón,et al.  SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy , 2020, New Journal of Physics.

[3]  A. Coleiro,et al.  Combining neutrino experimental light-curves for pointing to the next galactic core-collapse supernova , 2020, The European Physical Journal C.

[4]  H. Janka,et al.  Neutrino emission characteristics of black hole formation in three-dimensional simulations of stellar collapse , 2019, Physical Review D.

[5]  H.Branzacs,et al.  Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units , 2019, The European Physical Journal C.

[6]  M. Lindner,et al.  Timing the neutrino signal of a Galactic supernova , 2019, Physical Review D.

[7]  R. Cross,et al.  Eleven Year Search for Supernovae with the IceCube Neutrino Observatory , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[8]  P. Musico,et al.  KM3NeT front-end and readout electronics system: hardware, firmware and software , 2019, 1907.06453.

[9]  J. Powell,et al.  Astrophysics with core-collapse supernova gravitational wave signals in the next generation of gravitational wave detectors , 2019, Physical Review D.

[10]  L. S. Miranda,et al.  Dependence of atmospheric muon flux on seawater depth measured with the first KM 3 NeT detection units The KM 3 NeT Collaboration , 2019 .

[11]  S. Couch,et al.  Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae , 2018, The Astrophysical Journal.

[12]  L. Köpke Improved Detection of Supernovae with the IceCube Observatory , 2018 .

[13]  F. Vissani,et al.  What can we learn on supernova neutrino spectra with water Cherenkov detectors? , 2017, 1712.05584.

[14]  H. Janka Neutrino-Driven Explosions , 2017, 1702.08825.

[15]  J. Migenda Simulating fast time variations in the supernova neutrino flux in Hyper-Kamiokande , 2016, 1610.00559.

[16]  J. Migenda Detecting Fast Time Variations in the Supernova Neutrino Flux with Hyper-Kamiokande , 2016, 1609.04286.

[17]  K. Hayama,et al.  Multimessenger signals of long-term core-collapse supernova simulations: synergetic observation strategies , 2016, 1602.03028.

[18]  H. Haren,et al.  KM3MeT 2.0 Letter of intent for ARCA and ORCA , 2016 .

[19]  N. Deniskina,et al.  The prototype detection unit of the KM3NeT detector , 2015, 1510.01561.

[20]  H. Janka,et al.  Supernova Neutrinos: Production, Oscillations and Detection , 2015, 1508.00785.

[21]  Garching,et al.  Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations , 2014, 1406.0006.

[22]  N. Deniskina,et al.  Deep sea tests of a prototype of the KM3NeT digital optical module , 2014, 1405.0839.

[23]  P. O. Hulth,et al.  IceCube sensitivity for low-energy neutrinos from nearby supernovae (vol 535, pg A109, 2011) , 2014 .

[24]  H. Janka,et al.  Neutrino signature of supernova hydrodynamical instabilities in three dimensions. , 2013, Physical review letters.

[25]  C. Kochanek,et al.  OBSERVING THE NEXT GALACTIC SUPERNOVA , 2013, 1306.0559.

[26]  R. Bruijn Supernova Detection in IceCube: Status and Future , 2013, 1302.2040.

[27]  K. Scholberg,et al.  Supernova neutrino detection , 2000, 1205.6003.

[28]  M. Salathé,et al.  Novel technique for supernova detection with IceCube , 2011, 1106.1937.

[29]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[30]  P. O. Hulth,et al.  IceCube sensitivity for low-energy neutrinos from nearby supernovae , 2011, 1108.0171.

[31]  S. Tzamarias,et al.  HOU Reconstruction & Simulation (HOURS): A complete simulation and reconstruction package for very large volume underwater neutrino telescopes , 2011 .

[32]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[33]  H. Janka,et al.  Fast time variations of supernova neutrino fluxes and their detectability , 2010, 1006.1889.

[34]  S. Kim,et al.  Search for Supernova Neutrino Bursts at Super-Kamiokande , 2007 .

[35]  C. Giunti,et al.  Fundamentals of Neutrino Physics and Astrophysics , 2007 .

[36]  C. Ott,et al.  Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions , 2006, astro-ph/0610175.

[37]  G. Riccobene,et al.  Deep seawater inherent optical properties in the Southern Ionian Sea , 2006, astro-ph/0603701.

[38]  M. Obergaulinger,et al.  Convective processes and hydromagnetic instabilities in core collapse supernova simulations , 2006, Proceedings of the International Astronomical Union.

[39]  M. Sioli,et al.  A parameterisation of single and multiple muons in the deep water or ice , 2005, hep-ph/0602003.

[40]  M. Keil,et al.  Supernova Neutrino Spectra and Applications to Flavor Oscillations , 2003, astro-ph/0308228.

[41]  F. Vissani,et al.  Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.

[42]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[43]  P. Vogel,et al.  Estimates of weak and electromagnetic nuclear decay signatures for neutrino reactions in Super-Kamiokande , 2002 .

[44]  H. E. Dalhed,et al.  Future Detection of Supernova Neutrino Burst and Explosion Mechanism , 1997, astro-ph/9710203.

[45]  R. Beyer,et al.  Neutrino Electron Scattering , 1993 .

[46]  Burrows,et al.  The future of supernova neutrino detection. , 1992, Physical review. D, Particles and fields.

[47]  Hirata,et al.  Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A. , 1988, Physical review. D, Particles and fields.

[48]  E. N. Alexeyev,et al.  Detection of the neutrino signal from SN 1987A in the LMC using the INR Baksan underground scintillation telescope , 1988 .

[49]  S. Errede,et al.  Neutrinos from SN1987a in the IMB detector , 1988 .