Application of the Green’s functions method to the study of the optical properties of semiconductors

75 APPENDIX E. 77 APPENDIX F. 79 APPENDIX G. 82 APPENDIX H. Introduction. Generalized Green's functions. Equations of motion for the generalized single-particle Green's function. Bethe-Salpeter equation for the two-particle Green's function. Connection with linear-response theory. Conserving approximations. Gauge invariance, current conservation, and the Ward identities. Optical properties of semiconductors. Single-particle energy levels. Screening of static impurities. Excitonic states. A functional derivative identity. Dyson's equation. Reducible vs. irreducible parts of the correlation functions. Elimination of the spin variables and transformation to the energy-momentum representation. The Thomas-Reiche-Kuhn sum rule. The Clausius-Mossotti relation. The particle-hole Green's function. The Haken potential.

[1]  W. Heitler,et al.  The quantum theory of radiation , 1936 .

[2]  M. Gell-Mann,et al.  Bound States in Quantum Field Theory , 1951 .

[3]  L. Rosenfeld,et al.  Theory of electrons , 1951 .

[4]  W. Heitler The Quantum Theory Of Radiation Ed. 3 , 1954 .

[5]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[6]  M. H. Cohen,et al.  Dipolar Sums in the Primitive Cubic Lattices , 1955 .

[7]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[8]  W. Kohn,et al.  ELECTROMAGNETIC PROPERTIES OF INSULATORS. I , 1960 .

[9]  U. Fano Normal Modes of a Lattice of Oscillators with Many Resonances and Dipolar Coupling , 1960 .

[10]  D. Thouless Vibrational states of nuclei in the random phase approximation , 1961 .

[11]  Leo P. Kadanoff,et al.  CONSERVATION LAWS AND CORRELATION FUNCTIONS , 1961 .

[12]  G. Baym,et al.  Self-Consistent Approximations in Many-Body Systems , 1962 .

[13]  A. Layzer PROPERTIES OF THE ONE-PARTICLE GREEN'S FUNCTION FOR NONUNIFORM MANY-FERMION SYSTEMS , 1963 .

[14]  R. A. Silverman,et al.  Methods of Quantum Field Theory in Statistical Physics , 1964 .

[15]  R. Knox,et al.  Theory of excitons , 1963 .

[16]  Stuart A. Rice,et al.  Quantum Statistical Mechanics , 1963 .

[17]  J. R. Schrieffer,et al.  Theory of superconductivity , 1957 .

[18]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[19]  Theory of the Shallow Impurity States in Semiconductors , 1966 .

[20]  Lu J. Sham,et al.  ONE-PARTICLE PROPERTIES OF AN INHOMOGENEOUS INTERACTING ELECTRON GAS. , 1966 .

[21]  L. J. Sham,et al.  Many-Particle Derivation of the Effective-Mass Equation for the Wannier Exciton , 1966 .

[22]  Y. Onodera,et al.  Excitons in Alkali Halides , 1967 .

[23]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[24]  Green's Function Technique in Atomic and Molecular Physics , 1971 .

[25]  M. Altarelli,et al.  Integral equation approach to the exciton problem for intermediate binding , 1971 .

[26]  Y. Onodera Microscopic Dielectric Constant in Insulators , 1973 .

[27]  R. P. Gupta,et al.  Microscopic theory of dielectric screening and lattice dynamics. I. Local-field corrections and dielectric constants , 1974 .

[28]  G. Wendin Generalization of the RPAE: 4d-photoabsorption in atomic Ba including relaxation effects , 1975 .

[29]  Joseph L. Birman,et al.  Electronic States and Optical Transitions in Solids , 1976 .

[30]  Lu J. Sham,et al.  Local-field and excitonic effects in the optical spectrum of a covalent crystal , 1975 .

[31]  A. Mauger,et al.  New method for calculating Hartree-Fock energy-band structures in solids using a linear combination of atomic orbitals basis: Application to diamond , 1977 .

[32]  Hans Jurgen Mattausch,et al.  DYNAMICAL CORRELATION EFFECTS ON THE QUASIPARTICLE BLOCH STATES OF A COVALENT CRYSTAL , 1980 .

[33]  Werner Hanke,et al.  Many-particle effects in the optical spectrum of a semiconductor , 1980 .

[34]  G. Strinati Dynamical Shift and Broadening of Core Excitons in Semiconductors , 1982 .

[35]  Many-body effects in the screening of substitutional impurities in covalent crystals , 1982 .

[36]  W. Hanke,et al.  Dynamical aspects of correlation corrections in a covalent crystal , 1982 .

[37]  W. Hanke,et al.  Many-body effects in the absorption spectrum of a heteropolar crystal , 1983 .

[38]  C. S. Wang,et al.  Density-functional theory of excitation spectra of semiconductors; application to Si , 1983 .

[39]  Impurities in covalent crystals: Exchange-correlation and local-field effects , 1983 .

[40]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[41]  W. Hanke,et al.  Theory of Exchange-Correlation Effects in the Electronic Single- and Two-Particle Excitations of Covalent Crystals , 1983 .

[42]  W. Hanke,et al.  Exchange-correlation potential for one-electron excitations in a semiconductor , 1984 .

[43]  R. D. Sole,et al.  Macroscopic dielectric tensor at crystal surfaces , 1984 .

[44]  G. Strinati On the effective non-Hermitian eigenvalue problems for resonant levels , 1984 .

[45]  W. Hanke,et al.  Exchange — Correlation Potential for the Quasi-Particle Bloch States of a Semiconductor , 1985 .

[46]  J. Devreese,et al.  Electronic Structure, Dynamics, and Quantum Structural Properties of Condensed Matter , 1985 .

[47]  Excitonic effect in the optical spectrum of semiconductors. , 1985 .

[48]  Louie,et al.  First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. , 1985, Physical review letters.