PIRVS: An Advanced Visual-Inertial SLAM System with Flexible Sensor Fusion and Hardware Co-Design

In this paper, we present the PerceptIn Robotics Vision System (PIRVS), a visual-inertial computing hardware with embedded simultaneous localization and mapping (SLAM) algorithm. The PIRVS hardware is equipped with a multi-core processor, a global-shutter stereo camera, and an IMU with precise hardware synchronization. The PIRVS software features a flexible sensor fusion approach to not only tightly integrate visual measurements with inertial measurements and also to loosely couple with additional sensor modalities. It runs in real-time on both PC and the PIRVS hardware. We perform a thorough evaluation of the proposed system using multiple public visual-inertial datasets. Experimental results demonstrate that our system reaches comparable accuracy of state-of-the-art visual-inertial algorithms on PC, while being more efficient on the PIRVS hardware.

[1]  Charles Meunier [High precision]. , 2008, Perspective infirmiere : revue officielle de l'Ordre des infirmieres et infirmiers du Quebec.

[2]  Joel A. Hesch,et al.  A comparative analysis of tightly-coupled monocular, binocular, and stereo VINS , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  Ryad Benosman,et al.  Simultaneous Mosaicing and Tracking with an Event Camera , 2014, BMVC.

[5]  Stergios I. Roumeliotis,et al.  A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices , 2015, Robotics: Science and Systems.

[6]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[7]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[8]  Davide Scaramuzza,et al.  Event-Based, 6-DOF Camera Tracking from Photometric Depth Maps , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[10]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[11]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[12]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[13]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[15]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[16]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  Kostas Daniilidis,et al.  PennCOSYVIO: A challenging Visual Inertial Odometry benchmark , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[19]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[20]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[21]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[22]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[23]  Fredrik Gustafsson,et al.  Particle Filters , 2015, Encyclopedia of Systems and Control.

[24]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[25]  Roland Siegwart,et al.  A robust and modular multi-sensor fusion approach applied to MAV navigation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Sebastian Thrun,et al.  Particle Filters in Robotics , 2002, UAI.

[27]  Ian Reid,et al.  Trajectory alignment and evaluation in SLAM: Horn’s method vs alignment on the manifold , 2015 .

[28]  Sanjiv Singh,et al.  The 2005 DARPA Grand Challenge: The Great Robot Race , 2007 .