Diffusion‐weighted imaging of prostate cancer using a statistical model based on the gamma distribution

To assess the adequacy of a statistical model based on the gamma distribution for diffusion signal decays of prostate cancer (PCa) using b‐values ranging up to 2000 sec/mm2, and to evaluate the differences in gamma model parameters for PCa, benign prostatic hyperplasia (BPH), and peripheral zone (PZ).

[1]  D. Alexander,et al.  Information theoretic ranking of four models of diffusion attenuation in fresh and fixed prostate tissue ex vivo , 2014, Magnetic resonance in medicine.

[2]  Aytekin Oto,et al.  Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. , 2010, Radiology.

[3]  Takeo Ishigaki,et al.  Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate , 2005, Journal of magnetic resonance imaging : JMRI.

[4]  Andreas Lemke,et al.  Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. , 2011, Magnetic resonance imaging.

[5]  Katsuyoshi Ito,et al.  Apparent diffusion coefficient values in peripheral and transition zones of the prostate: Comparison between normal and malignant prostatic tissues and correlation with histologic grade , 2008, Journal of magnetic resonance imaging : JMRI.

[6]  G. Johnson,et al.  Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. , 2012, Radiology.

[7]  Dmitriy A Yablonskiy,et al.  Theoretical models of the diffusion weighted MR signal , 2010, NMR in biomedicine.

[8]  H. Shinmoto,et al.  Prostate cancer screening: The clinical value of diffusion‐weighted imaging and dynamic MR imaging in combination with T2‐weighted imaging , 2007, Journal of magnetic resonance imaging : JMRI.

[9]  B. Issa,et al.  In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo‐planar imaging , 2002, Journal of magnetic resonance imaging : JMRI.

[10]  Masoom A Haider,et al.  Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. , 2007, AJR. American journal of roentgenology.

[11]  Koichi Oshio,et al.  Interpretation of diffusion MR imaging data using a gamma distribution model. , 2014, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[12]  J. Helpern,et al.  MRI quantification of non‐Gaussian water diffusion by kurtosis analysis , 2010, NMR in biomedicine.

[13]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[14]  G. L. Bretthorst,et al.  Statistical model for diffusion attenuated MR signal , 2003, Magnetic resonance in medicine.

[15]  S. Haker,et al.  On high b diffusion imaging in the human brain: ruminations and experimental insights. , 2009, Magnetic resonance imaging.

[16]  Koichi Oshio,et al.  Biexponential apparent diffusion coefficients in prostate cancer. , 2009, Magnetic resonance imaging.

[17]  Reliability of bi-exponential parameter estimation , 2011 .

[18]  Stephan E Maier,et al.  Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. , 2006, Magnetic resonance imaging.

[19]  Tatsumi Kaji,et al.  An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer. , 2012, AJR. American journal of roentgenology.

[20]  H. Shinmoto,et al.  Diffusion kurtosis imaging study of prostate cancer: Preliminary findings , 2014, Journal of magnetic resonance imaging : JMRI.