Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation
暂无分享,去创建一个
Colin W. Glass | Jadran Vrabec | Martin Bernreuther | Christoph Niethammer | Svetlana Miroshnichenko | Martin Thomas Horsch | E. A. Müller | G. Jackson | C. W. Glass | G. Jackson | E. A. Müller | M. Horsch | J. Vrabec | M. Bernreuther | S. Miroshnichenko | Christoph Niethammer
[1] D. Frenkel,et al. Two-step vapor-crystal nucleation close below triple point. , 2008, The Journal of chemical physics.
[2] L. Farkas. Keimbildungsgeschwindigkeit in übersättigten Dämpfen , 1927 .
[3] R. Tolman. The Effect of Droplet Size on Surface Tension , 1949 .
[4] Hans Hasse,et al. A Set of Molecular Models for Symmetric Quadrupolar Fluids , 2001 .
[5] R. Hołyst,et al. Heat transfer at the nanoscale: evaporation of nanodroplets. , 2008, Physical review letters.
[6] Martin Horsch,et al. Grand canonical steady-state simulation of nucleation. , 2009, The Journal of chemical physics.
[7] Hans Hasse,et al. Contact angle dependence on the fluid-wall dispersive energy. , 2010, Langmuir : the ACS journal of surfaces and colloids.
[8] Daan Frenkel,et al. Computer simulation study of gas–liquid nucleation in a Lennard-Jones system , 1998 .
[9] H. Hasse,et al. Prediction of ternary vapor–liquid equilibria for 33 systems by molecular simulation , 2009, 0906.3170.
[10] Hans Hasse,et al. Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties , 2006 .
[11] Michael M. Resch. High Performance Computing on Vector Systems 2008 , 2006 .
[12] D. Brus,et al. Unraveling the "pressure effect" in nucleation. , 2008, Physical review letters.
[13] Hans Hasse,et al. The air pressure effect on the homogeneous nucleation of carbon dioxide by molecular simulation , 2010, 1001.1857.
[14] Ford,et al. Revised parametrization of the Dillmann-Meier theory of homogeneous nucleation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] Hans Hasse,et al. Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] J. Gibbs. On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.
[17] J. Feder,et al. Homogeneous nucleation and growth of droplets in vapours , 1966 .
[18] H. Vehkamäki,et al. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation. , 2009, The Journal of chemical physics.
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] E. A. Guggenheim. The thermodynamics of interfaces in systems of several components , 1940 .
[21] Hans-Joachim Bungartz,et al. Software design for a highly parallel molecular dynamics simulation framework in chemical engineering , 2011, J. Comput. Sci..
[22] K. Binder,et al. Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study. , 2010, The Journal of chemical physics.
[23] T. Young. III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.
[24] H. Hasse,et al. Thermodynamic models for vapor-liquid equilibria of nitrogen + oxygen + carbon dioxide at low temperatures , 2009, 0904.4795.
[25] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[26] J. E. McDonald,et al. Homogeneous Nucleation of Vapor Condensation. II. Kinetic Aspects , 1963 .
[27] Kenji Yasuoka,et al. Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid , 1998 .
[28] F. P. Buff. Spherical Interface. II. Molecular Theory , 1955 .
[29] M. Volmer,et al. Keimbildung in übersättigten Gebilden , 1926 .
[30] Sohei Kondo. Thermodynamical Fundamental Equation for Spherical Interface , 1956 .