Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation

Curved fluid interfaces are investigated on the nanometre length scale by molecular dynamics simulation. Thereby, droplets surrounded by a metastable vapour phase are stabilized in the canonical ensemble. Analogous simulations are conducted for cylindrical menisci separating vapour and liquid phases under confinement in planar nanopores. Regarding the emergence of nanodroplets during nucleation, a non-equilibrium phenomenon, both the non-steady dynamics of condensation processes and stationary quantities related to supersaturated vapours are considered. Results for the truncated and shifted Lennard-Jones fluid and for mixtures of quadrupolar fluids confirm the applicability of the capillarity approximation and the classical nucleation theory.

[1]  D. Frenkel,et al.  Two-step vapor-crystal nucleation close below triple point. , 2008, The Journal of chemical physics.

[2]  L. Farkas Keimbildungsgeschwindigkeit in übersättigten Dämpfen , 1927 .

[3]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[4]  Hans Hasse,et al.  A Set of Molecular Models for Symmetric Quadrupolar Fluids , 2001 .

[5]  R. Hołyst,et al.  Heat transfer at the nanoscale: evaporation of nanodroplets. , 2008, Physical review letters.

[6]  Martin Horsch,et al.  Grand canonical steady-state simulation of nucleation. , 2009, The Journal of chemical physics.

[7]  Hans Hasse,et al.  Contact angle dependence on the fluid-wall dispersive energy. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[8]  Daan Frenkel,et al.  Computer simulation study of gas–liquid nucleation in a Lennard-Jones system , 1998 .

[9]  H. Hasse,et al.  Prediction of ternary vapor–liquid equilibria for 33 systems by molecular simulation , 2009, 0906.3170.

[10]  Hans Hasse,et al.  Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties , 2006 .

[11]  Michael M. Resch High Performance Computing on Vector Systems 2008 , 2006 .

[12]  D. Brus,et al.  Unraveling the "pressure effect" in nucleation. , 2008, Physical review letters.

[13]  Hans Hasse,et al.  The air pressure effect on the homogeneous nucleation of carbon dioxide by molecular simulation , 2010, 1001.1857.

[14]  Ford,et al.  Revised parametrization of the Dillmann-Meier theory of homogeneous nucleation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Hans Hasse,et al.  Modification of the classical nucleation theory based on molecular simulation data for surface tension, critical nucleus size, and nucleation rate. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[17]  J. Feder,et al.  Homogeneous nucleation and growth of droplets in vapours , 1966 .

[18]  H. Vehkamäki,et al.  Cluster sizes in direct and indirect molecular dynamics simulations of nucleation. , 2009, The Journal of chemical physics.

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  E. A. Guggenheim The thermodynamics of interfaces in systems of several components , 1940 .

[21]  Hans-Joachim Bungartz,et al.  Software design for a highly parallel molecular dynamics simulation framework in chemical engineering , 2011, J. Comput. Sci..

[22]  K. Binder,et al.  Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study. , 2010, The Journal of chemical physics.

[23]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[24]  H. Hasse,et al.  Thermodynamic models for vapor-liquid equilibria of nitrogen + oxygen + carbon dioxide at low temperatures , 2009, 0904.4795.

[25]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[26]  J. E. McDonald,et al.  Homogeneous Nucleation of Vapor Condensation. II. Kinetic Aspects , 1963 .

[27]  Kenji Yasuoka,et al.  Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid , 1998 .

[28]  F. P. Buff Spherical Interface. II. Molecular Theory , 1955 .

[29]  M. Volmer,et al.  Keimbildung in übersättigten Gebilden , 1926 .

[30]  Sohei Kondo Thermodynamical Fundamental Equation for Spherical Interface , 1956 .