A Review of the Automation of the Czochralski Crystal Growth Process

On the occasion of the centennial of the invention of the Czochralski crystal growth process by the Polish scientist Jan Czochralski, a review of selected strategies for the automatic control of this process is given. This review provides a sketch of the fundamental challenges of controlling the Czochralski process and the basic concepts of feedback control. Both early and modern approaches to the control of the Czochralski process are described. The discussion focuses on questions related to feed-forward control, feedback control, and state estimation. The presented methods rely on simple mathematical process models in contrast to the nite element model-based approaches typically used in crystal growth process design and analysis. Such mathematical models motivate both the structure and parameters of the chosen controller. A comprehensive list of references to background literature on this topic completes this survey.

[1]  Stevan Dubljevic,et al.  Optimal boundary control of a diffusion–convection-reaction PDE model with time-dependent spatial domain: Czochralski crystal growth process , 2012 .

[2]  V. N. Kurlov,et al.  Algorithm for the Transitional Portions during the CZ Crystal Growth Using a Computer Control , 1986 .

[3]  G. C. Joyce,et al.  Novel development of the weighing method for automatic Czochralski crystal growth of semiconductors , 1993 .

[4]  T. Johansen,et al.  The weight gain signal in LEC crystal growth , 1992 .

[5]  A. S. Jordan,et al.  A comparative study of thermal stress induced dislocation generation in pulled GaAs, InP, and Si crystals , 1981 .

[6]  G. K. Steel,et al.  Analysis of the transfer function governing crystal growth in the Czochralski process , 1975 .

[7]  E. Brener,et al.  Crystallization stability during capillary shaping: II. Capillary stability for arbitrary small perturbations , 1980 .

[8]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process IV: Feedforward control and its interpretation from the crystal grower׳s view , 2014 .

[9]  A. S. Jordan,et al.  The theory and practice of dislocation reduction in GaAs and InP , 1984 .

[10]  T. Surek,et al.  Theory of shape stability in crystal growth from the melt , 1976 .

[11]  K. M. Kim,et al.  Computer Simulation and Controlled Growth of Large Diameter Czochralski Silicon Crystals , 1983 .

[12]  Michael Gevelber,et al.  Dynamics and control of the Czochralski process III. Interface dynamics and control requirements , 1994 .

[13]  A. S. Jordan,et al.  An analysis of the derivative weight-gain signal from measured crystal shape: Implications for diameter control of GaAs , 1983, The Bell System Technical Journal.

[14]  D. E. Bornside,et al.  Toward an integrated analysis of czochralski growth , 1989 .

[15]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[16]  David Rees,et al.  Industrial Digital Control Systems , 1988 .

[17]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process III: Proper choice of manipulated variables and controller parameter scheduling , 2012 .

[18]  B. M. Fulk MATH , 1992 .

[19]  Warren D. Seider,et al.  Model-predictive control of the Czochralski crystallization process. Part I. Conduction-dominated melt , 1997 .

[20]  Joseph A. O'Sullivan,et al.  Shape estimation for online diameter calibration in Czochralski silicon crystal growth , 2001, SPIE Optics East.

[21]  François Dupret,et al.  Dynamic global simulation of the Czochralski process. I. Principles of the method , 1997 .

[22]  G. C. Joyce,et al.  The dynamics of czochralski growth , 1990 .

[23]  G. W. Green,et al.  Automatic control of Czochralski crystal growth , 1972 .

[24]  V. Voronkov,et al.  The engineering of intrinsic point defects in silicon wafers and crystals , 2000 .

[25]  Maurizio Masi,et al.  Transient dynamics and control of indium phosphide LEC furnaces , 2000 .

[26]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[27]  Stevan Dubljevic,et al.  Control of parabolic PDEs with time-varying spatial domain: Czochralski crystal growth process , 2013, Int. J. Control.

[28]  Jeffrey J. Derby,et al.  Finite Element Analysis of a Thermal‐Capillary Model for Liquid Encapsulated Czochralski Growth , 1985 .

[29]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process II: Reconstruction of crystal radius and growth rate from the weighing signal , 2010 .

[30]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[31]  M. Healey,et al.  Developments in the weighing method of automatic crystal pulling , 1974 .

[32]  G. Stephanopoulos,et al.  Advanced control design considerations for the Czochralski process , 1987 .

[33]  Warren D. Seider,et al.  Model-predictive control of the Czochralski crystallization process. Part II. Reduced-order convection model , 1997 .

[34]  S. N. Rossolenko,et al.  Analysis of the Dynamics of the Controlled Crystallization Process Using the Czochralski Method , 1986 .

[35]  C. Brandle,et al.  Diameter control of czochralski grown crystals , 1974 .

[36]  Louise Roth,et al.  Preparation of Germanium Single Crystals , 1952, Proceedings of the IRE.

[37]  P. Rudolph,et al.  Growth of semi-insulating GaAs crystals in low temperature gradients by using the Vapour Pressure Controlled Czochralski Method (VCz) , 2001 .

[38]  T. Johansen,et al.  The weight gain signal in Czochralski crystal growth , 1992 .

[39]  G. C. Joyce,et al.  The weighing method of automatic Czochralski crystal growth: I. Basic theory , 1977 .

[40]  J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies , 1986 .

[41]  Stevan Dubljevic,et al.  Optimal control of convection–diffusion process with time-varying spatial domain: Czochralski crystal growth , 2011 .

[42]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[43]  Tom H. Johansen On the inherent stability of the Czochralski crystal growth process , 1991 .

[44]  Thierry Duffar,et al.  Crystal growth processes based on capillarity : czochralski, floating zone, shaping and crucible techniques , 2010 .

[45]  T. Surek,et al.  The growth of shaped crystals from the melt , 1980 .

[46]  Gennadii Satunkin,et al.  Modelling the dynamics and control design for Czochralski, Liquid Encapsulated Czochralski and Floating Zone processes , 2010 .

[47]  V. V. Voronkov,et al.  The mechanism of swirl defects formation in silicon , 1982 .

[48]  Jeffrey J. Derby,et al.  Dynamics of liquid-encapsulated czochralski growth of gallium arsenide: Comparing model with experiment , 1989 .

[49]  D. Hurle Dynamics, stability and control of Czochralski growth , 1993 .

[50]  J. Derby,et al.  On the dynamics of Czochralski crystal growth , 1987 .

[51]  M. Gevelber,et al.  Modelling requirements for development of an advanced Czochralski control system , 2001 .

[52]  T. Johansen,et al.  On the theory of the weighing method for automatic crystal shape control in czochralski growth , 1987 .

[53]  François Dupret,et al.  Transient computer simulation of a CZ crystal growth process , 1996 .

[54]  U. Gross,et al.  Automatic crystal pulling with optical diameter control using a laser beam , 1972 .

[55]  A. Muiznieks,et al.  Crystal shape 2D modeling for transient CZ silicon crystal growth , 2013 .

[56]  G. W. Green,et al.  The meniscus in Czochralski growth , 1974 .

[57]  Douglas P. Looze,et al.  MODELING AND IDENTIFICATION OF THE LIQUID ENCAPSULATED CZOCHRALSKI GAAS PROCESS FOR CONTROL , 1995 .

[58]  G. A Satunkin,et al.  Mathematical modelling and control system design of Czochralski and liquid encapsulated Czochralski processes: the basic low order mathematical model , 1995 .

[59]  Shahryar Motakef,et al.  Comparison of calculated and measured dislocation density in LEC-grown GaAs crystals , 1991 .

[60]  George Stephanopoulos,et al.  Dynamics and control of the Czochralski process II. Objectives and control structure design , 1988 .

[61]  Vincent Wertz,et al.  The use of a reduced model for on-line simulations of the Czochralski growth of single crystals , 1997 .

[62]  T. Johansen The effect of buoyancy on the weight gain signal in LEC crystal growth , 1987 .

[63]  R. G. Seidensticker,et al.  The basis of automatic diameter control utilizing ``bright ring'' meniscus reflections , 1975 .

[64]  Michael Gevelber,et al.  Dynamics and control of the Czochralski process IV. Control structure design for interface shape control and performance evaluation , 1994 .

[65]  D. Hurle Control of diameter in Czochralski and related crystal growth techniques , 1977 .

[66]  K. J. Bachmann,et al.  Programmed Czochralski growth of metals , 1970 .

[67]  Jan Winkler,et al.  Czochralski Process Dynamics and Control Design , 2010 .

[68]  P. Rudolph,et al.  Vapour pressure controlled Czochralski (VCZ) growth — a method to produce electronic materials with low dislocation density , 1997 .

[69]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process I: Motivation, modeling and feedback controller design , 2010 .

[70]  E. Brener,et al.  Crystallization stability during capillary shaping: I. General theory of capillary and thermal stability , 1980 .

[71]  H. G. Nalbandyan Possibility of programming and optimal control of growth in the Czochralski technique , 1984 .

[72]  G. C. Joyce,et al.  The weighing method of automatic Czochralski crystal growth: II. Control equipment , 1977 .

[73]  J. C. Brice,et al.  Analysis of the temperature distribution in pulled crystals , 1968 .

[74]  A. B. Crowley,et al.  Mathematical Modelling of Heat Flow in Czochralski Crystal Pulling , 1983 .

[75]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[76]  Jeffrey J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation , 1986 .

[77]  François Dupret,et al.  Dynamic global simulation of the Czochralski process II. Analysis of the growth of a germanium crystal , 1997 .

[78]  N. Abrosimovi Automated control of Czochralski and shaped crystal growth processes using weighing techniques , 2003 .

[79]  J. B. Mullin,et al.  Liquid encapsulation techniques: The use of an inert liquid in suppressing dissociation during the melt-growth of InAs and GaAs crystals , 1965 .

[80]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[81]  G. Stephanopoulos,et al.  Dynamics and control of the Czochralski process: I. Modelling and dynamic characterization , 1987 .

[82]  A. G. Leonov,et al.  Weighing control of the automatic crystallization process from the melt , 1990 .

[83]  V. N. Kurlov,et al.  Servo-controlled crystal growth by the Czochralski method estimating the state vector of the controlled object , 1992 .

[84]  K. Riedling Autonomous liquid encapsulated Czochralski (LEC) growth of single crystal GaAs by “intelligent” digital control , 1988 .

[85]  K. Mika,et al.  Shape and stability of Menisci in czochralski growth and comparison with analytical approximations , 1975 .

[86]  C. Brandle,et al.  Automatic diameter control of Czochralski grown crystals , 1973 .

[87]  T. Jones,et al.  Capillary phenomena. Part 11.—Approximate treatment of the shape and properties of fluid interfaces of infinite extent meeting solids in a gravitational field , 1980 .

[88]  P. Van Der Werf,et al.  Diameter control of lec grown GaP crystals , 1974 .

[89]  E. Kubota Analyses of Crystal Shape Monitoring of LEC‐Grown InP Crystals by using a Disc Approximation Approach , 1999 .