An automated high performance capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometer for high-throughput proteomics

[1]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[2]  M E Belov,et al.  High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry. , 2001, Analytical chemistry.

[3]  D. J. Douglas,et al.  An interface with a linear quadrupole ion guide for an electrospray-ion trap mass spectrometer system. , 2000, Analytical chemistry.

[4]  M. Emmett,et al.  High sensitivity Fourier transform ion cyclotron resonance mass spectrometry for biological analysis with nano-LC and microelectrospray ionization. , 2001, Analytical chemistry.

[5]  J. Yates,et al.  Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. , 1995, Analytical chemistry.

[6]  Richard D. Smith,et al.  Automated gain control and internal calibration with external ion accumulation capillary liquid chromatography-electrospray ionization Fourier transform ion cyclotron resonance. , 2003, Analytical chemistry.

[7]  T. Veenstra,et al.  Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. , 2001, Analytical chemistry.

[8]  Richard D. Smith,et al.  Higher-resolution data-dependent selective external ion accumulation for capillary LC-FTICR , 2002 .

[9]  T. Veenstra,et al.  Design and performance of an ESI interface for selective external ion accumulation coupled to a Fourier transform ion cyclotron mass spectrometer. , 2001, Analytical chemistry.

[10]  C. Watanabe,et al.  Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Hogan,et al.  Suspended trapping procedure for alleviation of space charge effects in gas chromatography/Fourier transform mass spectrometry , 1990 .

[12]  B. Futcher,et al.  A Sampling of the Yeast Proteome , 1999, Molecular and Cellular Biology.

[13]  Richard H. Byrd,et al.  Algorithm 676: ODRPACK: software for weighted orthogonal distance regression , 1989, TOMS.

[14]  T. Hunkapiller,et al.  Peptide mass maps: a highly informative approach to protein identification. , 1993, Analytical biochemistry.

[15]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[16]  M. Gross,et al.  Space charge effects in Fourier transform mass spectrometry. Mass calibration. , 1984, Analytical chemistry.

[17]  Richard D. Smith,et al.  Utility of accurate mass tags for proteome-wide protein identification. , 2000, Analytical chemistry.

[18]  N. F. Verster,et al.  Absolute intensities and perpendicular temperatures of supersonic beams of polyatomic gases , 1981 .

[19]  Gordon A Anderson,et al.  Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. , 2003, Analytical chemistry.

[20]  Bruce Asamoto FT-ICR/MS: Analytical applications of Fourier transform ion cyclotron resonance mass spectrometry , 1991 .

[21]  S. Beu,et al.  Radial ion transport due to resistive-wall destabilization in Fourier transform mass spectrometry , 1991 .

[22]  A. Marshall,et al.  Counting individual sulfur atoms in a protein by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry: experimental resolution of isotopic fine structure in proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Electrospray ionization-Fourier transform ion cyclotron mass spectrometry using ion preselection and external accumulation for ultrahigh sensitivity , 2001, Journal of the American Society for Mass Spectrometry.

[24]  A. Marshall Milestones in fourier transform ion cyclotron resonance mass spectrometry technique development , 2000 .

[25]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[26]  T. Mcmahon,et al.  A high pressure external ion source for Fourier transform ion cyclotron resonance spectrometry , 1990 .

[27]  J. Yates,et al.  Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. , 1997, Analytical chemistry.

[28]  P. Caravatti,et al.  The ‘infinity cell’: A new trapped‐ion cell with radiofrequency covered trapping electrodes for fourier transform ion cyclotron resonance mass spectrometry , 1991 .

[29]  D. Muddiman,et al.  A dual electrospray ionization source combined with hexapole accumulation to achieve high mass accuracy of biopolymers in Fourier transform ion cyclotron resonance mass spectrometry , 2000, Journal of the American Society for Mass Spectrometry.

[30]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[31]  A. Shevchenko,et al.  Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry , 1996, Nature.

[32]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[33]  A. Shevchenko,et al.  Two‐dimensional gel protein database of Saccharomyces cerevisiae (update 1999) , 1999, Electrophoresis.

[34]  D. Hochstrasser,et al.  The dynamic range of protein expression: A challenge for proteomic research , 2000, Electrophoresis.

[35]  S. Guan,et al.  Sympathetic cooling of trapped negative ions by self-cooled electrons in a fourier transform ion cyclotron resonance mass spectrometer , 1997 .

[36]  S. Guan,et al.  Masses of stable neon isotopes determined at parts per billion precision by Fourier transform ion cyclotron resonance mass spectrometry , 1993 .

[37]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[38]  Ljiljana Paša-Tolić,et al.  An accurate mass tag strategy for quantitative and high‐throughput proteome measurements , 2002, Proteomics.

[39]  Richard D. Smith,et al.  Independent control of ion transmission in a jet disrupter dual-channel ion funnel electrospray ionization MS interface. , 2002, Analytical chemistry.

[40]  M. Karas,et al.  Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. , 1988, Analytical chemistry.

[41]  S. Gygi,et al.  Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Veenstra,et al.  Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. , 2001, Analytical chemistry.

[43]  M. Senko,et al.  External accumulation of ions for enhanced electrospray ionization fourier transform ion cyclotron resonance mass spectrometry , 1997 .

[44]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[45]  Ronald J Moore,et al.  Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Anderson,et al.  A dynamic ion cooling technique for FTICR mass spectrometry , 2001, Journal of the American Society for Mass Spectrometry.

[47]  A. Marshall,et al.  Fourier Transform Ion Cyclotron Resonance Spectroscopy , 1974 .

[48]  S. Patterson,et al.  Comparison of in‐gel and on‐membrane digestion methods at low to sub‐pmol level for subsequent peptide and fragment‐ion mass analysis using matrix‐assisted laser‐desorption/ionization mass spectrometry , 1997, Electrophoresis.

[49]  S. Beu,et al.  Ion trapping and manipulation in a tandem time-of-flight-Fourier transform mass spectrometer , 1991 .

[50]  F. McLafferty,et al.  Fourier-transform mass spectrometry of large molecules by electrospray ionization. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Roepstorff,et al.  Identification of proteins in polyacrylamide gels by mass spectrometric peptide mapping combined with database search. , 1994, Biological mass spectrometry.

[52]  G. Anderson,et al.  Initial implementation of an electrodynamic ion funnel with fourier transform ion cyclotron resonance mass spectrometry , 2000, Journal of the American Society for Mass Spectrometry.

[53]  Richard D. Smith,et al.  High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry using nanoelectrospray ionization for proteomics. , 2002, Analytical chemistry.

[54]  Friedrich Lottspeich,et al.  Matrix-assisted laser desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis , 1994 .

[55]  Richard D. Smith,et al.  Increased proteome coverage for quantitative peptide abundance measurements based upon high performance separations and DREAMS FTICR mass spectrometry , 2002, Journal of the American Society for Mass Spectrometry.

[56]  W. Paul,et al.  Das elektrische Massenfilter als Massenspektrometer und Isotopentrenner , 1958 .

[57]  Jennifer M. Campbell,et al.  A new linear ion trap time‐of‐flight system with tandem mass spectrometry capabilities , 1998 .