Degenerate Stirling Polynomials of the Second Kind and Some Applications

Recently, the degenerate λ -Stirling polynomials of the second kind were introduced and investigated for their properties and relations. In this paper, we continue to study the degenerate λ -Stirling polynomials as well as the r-truncated degenerate λ -Stirling polynomials of the second kind which are derived from generating functions and Newton’s formula. We derive recurrence relations and various expressions for them. Regarding applications, we show that both the degenerate λ -Stirling polynomials of the second and the r-truncated degenerate λ -Stirling polynomials of the second kind appear in the expressions of the probability distributions of appropriate random variables.

[1]  Taekyun Kim,et al.  Some identities on r-central factorial numbers and r-central Bell polynomials , 2019, Advances in Difference Equations.

[2]  Taekyun Kim,et al.  Degenerate central Bell numbers and polynomials , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[3]  Seog-Hoon Rim,et al.  On finite-times degenerate Cauchy numbers and polynomials , 2015 .

[4]  Taekyun Kim,et al.  Extended Stirling numbers of the first kind associated with Daehee numbers and polynomials , 2019 .

[5]  Taekyun Kim,et al.  Some identities involving special numbers and moments of random variables , 2019, Rocky Mountain Journal of Mathematics.

[6]  Dae San Kim,et al.  Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials , 2019, Symmetry.

[7]  Taekyun Kim,et al.  Degenerate Bernstein polynomials , 2018, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[8]  F. T. Howard,et al.  Bell polynomials and degenerate stirling numbers , 1979 .

[9]  Taekyun Kim,et al.  Degenerate Laplace transform and degenerate gamma function , 2017, 1701.06881.

[10]  Taekyun Kim,et al.  A note on type 2 Changhee and Daehee polynomials , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[11]  Markos V. Koutras,et al.  Non-central stirling numbers and some applications , 1982, Discret. Math..

[12]  Taekyun Kim,et al.  On λ-Bell polynomials associated with umbral calculus , 2017 .

[13]  Dae San Kim,et al.  Note on Type 2 Degenerate q-Bernoulli Polynomials , 2019, Symmetry.

[14]  Taekyun Kim,et al.  Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind , 2018, Science China Mathematics.

[15]  Dae San Kim,et al.  Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials , 2019, Symmetry.