In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

[1]  V. S. Raja,et al.  Role of chlorides on pitting and hydrogen embrittlement of Mg–Mn wrought alloy , 2013 .

[2]  R. Raman,et al.  Stress corrosion cracking of a recent rare-earth containing magnesium alloy, EV31A, and a common Al-containing alloy, AZ91E , 2013 .

[3]  S. Stanzl-Tschegg,et al.  PHB, crystalline and amorphous magnesium alloys: promising candidates for bioresorbable osteosynthesis implants? , 2012, Materials science & engineering. C, Materials for biological applications.

[4]  Frank Feyerabend,et al.  Effects of corrosion environment and proteins on magnesium corrosion , 2012 .

[5]  J. Nie,et al.  In Vitro Evaluation of Degradation of a Calcium Phosphate Coating on a Mg-Zn-Ca Alloy in a Physiological Environment , 2012 .

[6]  M. Kaiser,et al.  Increasing stability by pre-bending the nails in elastic stable intramedullary nailing: a biomechanical analysis of a synthetic femoral spiral fracture model. , 2012, The Journal of bone and joint surgery. British volume.

[7]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[8]  R. Raman,et al.  Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. , 2012, Acta biomaterialia.

[9]  Darren J. Martin,et al.  Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C , 2011 .

[10]  N. Birbilis,et al.  A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium , 2011 .

[11]  R. K. Singh Raman,et al.  Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[12]  Peter J. Uggowitzer,et al.  High-strength magnesium alloys for degradable implant applications , 2011 .

[13]  Y. Zheng,et al.  Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. , 2010, Acta biomaterialia.

[14]  X. M. Zhang,et al.  In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin , 2010 .

[15]  X. Pan,et al.  Enhancement of corrosion resistance of Mg-9 wt.% Al-1 wt.% Zn alloy by a calcite (CaCO3) conversion hard coating , 2010 .

[16]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[17]  W. Zhou,et al.  Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid , 2010 .

[18]  Nick Birbilis,et al.  A survey of bio-corrosion rates of magnesium alloys , 2010 .

[19]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[20]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[21]  P. Uggowitzer,et al.  Design strategy for new biodegradable Mg–Y–Zn alloys for medical applications , 2009 .

[22]  Akiko Yamamoto,et al.  Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro , 2009 .

[23]  P. Uggowitzer,et al.  Design strategy for microalloyed ultra-ductile magnesium alloys , 2009 .

[24]  G. Thompson,et al.  Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings , 2008 .

[25]  A. Atrens,et al.  Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80 , 2008 .

[26]  D. Eliezer,et al.  Stress corrosion cracking of new Mg–Zn–Mn wrought alloys containing Si , 2008 .

[27]  R. Raman,et al.  In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. , 2008, Biomaterials.

[28]  Raimund Erbel,et al.  Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial , 2007, The Lancet.

[29]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[30]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[31]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[32]  Andrej Atrens,et al.  A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys , 2005 .

[33]  Raimund Erbel,et al.  Drug-eluting bioabsorbable magnesium stent. , 2004, Journal of interventional cardiology.

[34]  Ayako Oyane,et al.  Preparation and assessment of revised simulated body fluids. , 2003, Journal of biomedical materials research. Part A.

[35]  K. Maruyama,et al.  The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .

[36]  W. Zhou,et al.  Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy , 2000 .

[37]  N E Saris,et al.  Magnesium. An update on physiological, clinical and analytical aspects. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[38]  G. Song,et al.  Corrosion mechanisms of magnesium alloys , 1999 .

[39]  Simon P. Wilson,et al.  A statistical analysis of microcrack accumulation in PMMA under fatigue loading: applications to orthopaedic implant fixation , 1998 .

[40]  D. StJohn,et al.  The electrochemical corrosion of pure magnesium in 1 N NaCl , 1997 .

[41]  V. Ashworth,et al.  Environmentally-induced cracking of magnesium , 1984 .

[42]  L. Fairman,et al.  Transgranular see in Mg-Al alloys , 1971 .

[43]  R. Raman,et al.  Investigations into stress corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment , 2011 .

[44]  S. Stanzl-Tschegg,et al.  Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. , 2011, Acta biomaterialia.

[45]  J. Kruger,et al.  Corrosion of magnesium , 1993 .

[46]  S. Rajeswari,et al.  Investigation of failures in stainless steel orthopaedic implant devices: pit-induced stress corrosion cracking , 1992 .

[47]  M. Cavallini,et al.  Stress corrosion cracking of bone implants , 1977 .