A Semigroup Approach to Harmonic Maps

We present a semigroup approach to harmonic maps between metric spaces. Our basic assumption on the target space (N,d) is that it admits a “barycenter contraction”, i.e. a contracting map which assigns to each probability measure q on N a point b(q) in N. This includes all metric spaces with globally nonpositive curvature in the sense of Alexandrov as well as all metric spaces with globally nonpositive curvature in the sense of Busemann. It also includes all Banach spaces.The analytic input comes from the domain space (M,ρ) where we assume that we are given a Markov semigroup (pt)t>0. Typical examples come from elliptic or parabolic second-order operators on Rn, from Lévy type operators, from Laplacians on manifolds or on metric measure spaces and from convolution operators on groups. In contrast to the work of Korevaar and Schoen (1993, 1997), Jost (1994, 1997), Eells and Fuglede (2001) our semigroups are not required to be symmetric.The linear semigroup acting, e.g., on the space of bounded measurable functions u:M→R gives rise to a nonlinear semigroup (Pt*)t acting on certain classes of measurable maps f:M → N. We will show that contraction and smoothing properties of the linear semigroup (pt)t can be extended to the nonlinear semigroup (Pt*)t, for instance, Lp–Lq smoothing, hypercontractivity, and exponentially fast convergence to equilibrium. Among others, we state existence and uniqueness of the solution to the Dirichlet problem for harmonic maps between metric spaces. Moreover, for this solution we prove Lipschitz continuity in the interior and Hölder continuity at the boundary.Our approach also yields a new interpretation of curvature assumptions which are usually required to deduce regularity results for the harmonic map flow: lower Ricci curvature bounds on the domain space are equivalent to estimates of the L1-Wasserstein distance between the distribution of two Brownian motions in terms of the distance of their starting points; nonpositive sectional curvature on the target space is equivalent to the fact that the L1-Wasserstein distance of two distributions always dominates the distance of their barycenters.

[1]  Niels Jacob,et al.  Pseudo-Differential Operators and Markov Processes , 1996 .

[2]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[3]  Karl-Theodor Sturm Nonlinear Markov Operators, Discrete Heat Flow, and Harmonic Maps Between Singular Spaces , 2002 .

[4]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[5]  L. Saloff-Coste,et al.  On the Absolute Continuity of Gaussian Measures on Locally Compact Groups , 2001 .

[6]  Anton Thalmaier Brownian motion and the formation of singularities in the heat flow for harmonic maps , 1996 .

[7]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[8]  S. Rachev,et al.  Mass transportation problems , 1998 .

[9]  N. Jacob Fourier analysis and semigroups , 2001 .

[10]  G. Gregori Sobolev spaces and harmonic maps between singular spaces , 1998 .

[11]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[12]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[13]  Hitoshi Kumanogō,et al.  Pseudo-differential operators , 1982 .

[14]  Jürgen Jost,et al.  Equilibrium maps between metric spaces , 1994 .

[15]  Stefan Hildebrandt,et al.  An existence theorem for harmonic mappings of Riemannian manifolds , 1977 .

[16]  Karl-Theodor Sturm Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature , 2002 .

[17]  Potential theory on infinite-dimensional Abelian groups , 1995 .

[18]  B. Fuglede The Dirichlet problem for harmonic maps from Riemannian polyhedra to spaces of upper bounded curvature , 2005 .

[19]  H. Heyer,et al.  Harmonic Analysis of Probability Measures on Hypergroups , 1994 .

[20]  M. Eisen,et al.  Probability and its applications , 1975 .

[21]  Marc Arnaudon Espérances conditionnelles et C-martingales dans les variétés , 1994 .

[22]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[23]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[24]  Boundary value problems and Markov processes , 1991 .

[25]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[26]  T. K. Carne HEAT KERNELS AND SPECTRAL THEORY: (Cambridge Tracts in Mathematics 92) , 1990 .

[27]  R. Schoen,et al.  Harmonic maps into singular spaces andp-adic superrigidity for lattices in groups of rank one , 1992 .

[28]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[29]  L. Lemaire HARMONIC MAPS BETWEEN RIEMANNIAN POLYHEDRA (Cambridge Tracts in Mathematics 142) By JAMES EELLS and BENT FUGLEDE: 296 pp., £40.00, ISBN 0-521-77311-3 (Cambridge University Press, 2001). , 2002 .

[30]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[31]  D. Jerison,et al.  Estimates for the heat kernel for a sum of squares of vector fields , 1986 .

[32]  Takashi Komatsu,et al.  Pseudo-differential operators and Markov processes , 1984 .

[33]  Luc Lemaire,et al.  Two Reports on Harmonic Maps , 1995 .

[34]  M. Émery Stochastic Calculus in Manifolds , 1989 .

[35]  J. Picard Barycentres et martingales sur une variété , 1994 .

[36]  Zhi-Ming Ma,et al.  Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .

[37]  Y. Derriennic POTENTIAL THEORY ON INFINITE‐DIMENSIONAL ABELIAN GROUPS (de Gruyter Studies in Mathematics 21) , 1998 .

[38]  Uwe F. Mayer,et al.  Gradient flows on nonpositively curved metric spaces and harmonic maps , 1998 .

[39]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[40]  R. Schoen,et al.  Global existence theorems for harmonic maps to non-locally compact spaces , 1997 .

[41]  Toru Ishihara,et al.  A mapping of Riemannian manifolds which preserves harmonic functions , 1979 .

[42]  Es-Sahib Aziz,et al.  Barycentre canonique pour un espace métrique à courbure négative , 1999 .

[43]  Michael Struwe,et al.  On the evolution of harmonic mappings of Riemannian surfaces , 1985 .

[44]  M. Ledoux The geometry of Markov diffusion generators , 1998 .

[45]  Nonlinear Markov operators associated with symmetric Markov kernels and energy minimizing maps between singular spaces , 2001 .

[46]  M. Gromov,et al.  Harmonic Maps between Riemannian Polyhedra , 2001 .

[47]  R. Schoen,et al.  Sobolev spaces and harmonic maps for metric space targets , 1993 .

[48]  R. Durrett Probability: Theory and Examples , 1993 .

[49]  A. Grigor’yan Spectral Theory and Geometry: Estimates of heat kernels on Riemannian manifolds , 1999 .

[50]  Jürgen Jost,et al.  Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .

[51]  Werner Ballmann,et al.  Lectures on Spaces of Nonpositive Curvature , 1995 .

[52]  J. Picard The Manifold-Valued Dirichlet Problem for Symmetric Diffusions , 2001 .

[53]  Hölder continuity of harmonic maps from Riemannian polyhedra to spaces of upper bounded curvature , 2003 .

[54]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[55]  Stefan Hildebrandt,et al.  Harmonic mappings into Riemannian manifolds with non-positive sectional curvature. , 1975 .

[56]  Hiroaki Aikawa Hölder Continuity of the Dirichlet Solution for a General Domain , 2002 .

[57]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[58]  M. Planck Generalized Dirichlet forms and harmonic maps , 1997 .