Stencil selection algorithms for WENO schemes on unstructured meshes

Abstract In this paper, a family of stencil selection algorithms is presented for WENO schemes on unstructured meshes. The associated freedom of stencil selection for unstructured meshes, in the context of WENO schemes present a plethora of various stencil selection algorithms. The particular focus of this paper is to assess the performance of various stencil selection algorithm, investigate the parameters that dictate their robustness, accuracy and computational efficiency. Ultimately, efficient and robust stencils are pursued that can provide significant savings in computational performance, while retaining the non-oscillatory character of WENO schemes. This is achieved when making the stencil selection algorithms adaptive, based on the quality of the cells for unstructured meshes, that can in turn reduce the computational cost of WENO schemes. For assessing the performance of the developed algorithms well established test problems are employed. These include the least square approximation of polynomial functions, linear advection equation of smooth functions and solid body rotation test problem. Euler and Navier-Stokes equations test problems are also pursued such as the Shu-Osher test problem, the Double Mach Reflection, the supersonic Forward Facing step, the Kelvin-Helmholtz instability, the Taylor-Green Vortex, and the flow past a transonic circular cylinder.

[1]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[2]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[3]  Jonathan R. Bull,et al.  Simulation of the Taylor–Green Vortex Using High-Order Flux Reconstruction Schemes , 2015 .

[4]  Antonis F. Antoniadis,et al.  Numerical Accuracy in RANS Computations of High-Lift Multi-element Airfoil and Aicraft Configurations , 2015 .

[5]  Xianqing Lv,et al.  Well-balanced hybrid compact-WENO scheme for shallow water equations , 2017 .

[6]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[7]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[8]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .

[10]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[11]  Aldo Rona,et al.  Measurements of Fluctuating Pressures on a Circular Cylinder in Subsonic Crossflow , 2009 .

[12]  M. Breuer LARGE EDDY SIMULATION OF THE SUBCRITICAL FLOW PAST A CIRCULAR CYLINDER: NUMERICAL AND MODELING ASPECTS , 1998 .

[13]  Haecheon Choi,et al.  Distributed forcing of flow over a circular cylinder , 2005 .

[14]  Ivar S. Ertesvåg,et al.  Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox , 2012 .

[15]  I. V. Krassovskaya,et al.  Classification of pseudo-steady shock wave reflection types , 2012 .

[16]  Wanai Li,et al.  High‐order k‐exact WENO finite volume schemes for solving gas dynamic Euler equations on unstructured grids , 2012 .

[17]  Clinton P. T. Groth,et al.  High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows , 2011, J. Comput. Phys..

[18]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[19]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[20]  Panagiotis Tsoutsanis,et al.  Low-Mach number treatment for Finite-Volume schemes on unstructured meshes , 2018, Appl. Math. Comput..

[21]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[22]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[23]  Dimitris Drikakis,et al.  WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows , 2014, J. Comput. Phys..

[24]  D. Drikakis,et al.  Addressing the challenges of implementation of high-order finite-volume schemes for atmospheric dynamics on unstructured meshes , 2016 .

[25]  Panagiotis Tsoutsanis,et al.  High-Order Methods for Hypersonic Shock Wave Turbulent Boundary Layer Interaction Flow , 2015 .

[26]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[27]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[28]  Panagiotis Tsoutsanis,et al.  Adaptive mesh refinement techniques for high-order finite-volume WENO schemes , 2016 .

[29]  Yan Guo,et al.  A maximum-principle-satisfying finite volume compact-WENO scheme for traffic flow model on networks , 2016 .

[30]  Carl Ollivier-Gooch,et al.  Accuracy analysis of unstructured finite volume discretization schemes for diffusive fluxes , 2014 .

[31]  Christer Fureby,et al.  Simulation of transition and turbulence decay in the Taylor–Green vortex , 2007 .

[32]  Panagiotis Tsoutsanis,et al.  High-order schemes on mixed-element unstructured grids for aerodynamic flows , 2012 .

[33]  Freddie D. Witherden,et al.  On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools , 2017, J. Comput. Phys..

[34]  Zhen Gao,et al.  High Order Positivity- and Bound-Preserving Hybrid Compact-WENO Finite Difference Scheme for the Compressible Euler Equations , 2018, J. Sci. Comput..

[35]  Panagiotis Tsoutsanis,et al.  Azure: an advanced CFD software suite based on high-resolution and high-order methods , 2015 .

[36]  M. Semplice,et al.  Adaptive Mesh Refinement for Hyperbolic Systems Based on Third-Order Compact WENO Reconstruction , 2014, Journal of Scientific Computing.

[37]  Claus-Dieter Munz,et al.  A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes , 2007, J. Comput. Phys..

[38]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[39]  Alexandros Syrakos,et al.  A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods , 2016 .

[40]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[41]  Chi-Wang Shu,et al.  Central WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2006, SIAM J. Sci. Comput..

[42]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[43]  J. Wallace,et al.  The velocity field of the turbulent very near wake of a circular cylinder , 1996 .

[44]  M. de la Llave Plata,et al.  Development of a multiscale LES model in the context of a modal discontinuous Galerkin method , 2016 .

[45]  Jun Zhu,et al.  Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes , 2009, J. Sci. Comput..

[46]  A. Frank,et al.  The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study , 1995, astro-ph/9510115.

[47]  Oliver Kolb On the Full and Global Accuracy of a Compact Third Order WENO Scheme: Part II , 2015, ENUMATH.

[48]  Jianxian Qiu,et al.  Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes , 2017 .

[49]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[50]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[51]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[52]  Boris Diskin,et al.  Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations , 2013 .

[53]  Omer San,et al.  Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin–Helmholtz instability , 2015 .

[54]  O. San,et al.  Numerical assessments of high-order accurate shock capturing schemes: Kelvin–Helmholtz type vortical structures in high-resolutions , 2014 .

[55]  Michael Dumbser,et al.  Central Weighted ENO Schemes for Hyperbolic Conservation Laws on Fixed and Moving Unstructured Meshes , 2017, SIAM J. Sci. Comput..

[56]  Yan Guo,et al.  A Maximum-Principle-Satisfying High-Order Finite Volume Compact WENO Scheme for Scalar Conservation Laws with Applications in Incompressible Flows , 2014, J. Sci. Comput..

[57]  Oliver Kolb,et al.  On the Full and Global Accuracy of a Compact Third Order WENO Scheme , 2014, SIAM J. Numer. Anal..

[58]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[59]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[60]  Yan Guo,et al.  Seventh order compact-WENO scheme for hyperbolic conservation laws , 2018, Computers & Fluids.

[61]  D. Drikakis,et al.  Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem , 2015 .

[62]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[63]  Murtazo Nazarov,et al.  Numerical investigation of a viscous regularization of the Euler equations by entropy viscosity , 2017 .

[64]  Hong Luo,et al.  A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on three-dimensional hybrid grids , 2017 .

[65]  Fermín Navarrina,et al.  A new shock-capturing technique based on Moving Least Squares for higher-order numerical schemes on unstructured grids , 2010 .

[66]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[67]  Boris Diskin,et al.  Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes , 2011 .

[68]  Jörg Franke,et al.  Large eddy simulation of the flow past a circular cylinder at ReD=3900 , 2002 .

[69]  Zhiliang Xu,et al.  Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..

[70]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[71]  Ruo Li,et al.  A Robust WENO Type Finite Volume Solver for Steady Euler Equations on Unstructured Grids , 2011 .

[72]  Claus-Dieter Munz,et al.  High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations , 2014 .

[73]  Rainald Löhner,et al.  A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..

[74]  Hiroaki Nishikawa Robust and accurate viscous discretization via upwind scheme – I: Basic principle , 2011 .

[75]  Panagiotis Tsoutsanis,et al.  Extended bounds limiter for high-order finite-volume schemes on unstructured meshes , 2018, J. Comput. Phys..

[76]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[77]  Carl F. Ollivier Gooch,et al.  Higher-Order Finite Volume Solution Reconstruction on Highly Anisotropic Meshes , 2013 .

[78]  G. Ben-Dor,et al.  Analysis of double-Mach-reflection wave configurations with convexly curved Mach stems , 1999 .

[79]  Panagiotis Tsoutsanis,et al.  Implementation of a low-mach number modification for high-order finite-volume schemes for arbitrary hybrid unstructured meshes , 2016 .

[80]  Todd Arbogast,et al.  A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws , 2014, J. Comput. Phys..

[81]  Natalia Petrovskaya,et al.  THE ACCURACY OF LEAST-SQUARES APPROXIMATION ON HIGHLY STRETCHED MESHES , 2008 .

[82]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[83]  Donghyun You,et al.  A conservative finite volume method for incompressible Navier-Stokes equations on locally refined nested Cartesian grids , 2016, J. Comput. Phys..

[84]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[85]  Panagiotis Tsoutsanis,et al.  Improvement of the computational performance of a parallel unstructured WENO finite volume CFD code for Implicit Large Eddy Simulation , 2018, Computers & Fluids.