Reactive casting coatings for obtaining in situ composite layers based on Fe alloys

[1]  M. Masanta,et al.  Microstructure and mechanical properties of TiC-Ni coating on AISI304 steel produced by TIG cladding process , 2017 .

[2]  M. Masanta,et al.  Evaluation of microstructure and mechanical properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) coating process , 2016 .

[3]  I. Taha,et al.  Low temperature pyrolysis of carboxymethylcellulose , 2016, Cellulose.

[4]  S. Żymankowska-Kumon,et al.  Analiza chromatograficzna wybranych produktów rozkładu termicznego mas rdzeniowych wykonanych w technologii cold-box , 2016 .

[5]  M. Masanta,et al.  Effect of pulse laser parameters on TiC reinforced AISI 304 stainless steel composite coating by laser surface engineering process , 2015 .

[6]  L. Berger Application of hardmetals as thermal spray coatings , 2015 .

[7]  T. N. Baker,et al.  Overlapping tracks processed by TIG melting TiC preplaced powder on low alloy steel surfaces , 2015 .

[8]  D. Woźniak,et al.  Badania właściwości reologicznych wybranych powłok ochronnych stosowanych na formy i rdzenie piaskowe , 2015 .

[9]  Toshifumi Sugama,et al.  Effect of sodium carboxymethyl celluloses on water-catalyzed self-degradation of 200 °C-heated alkali-activated cement , 2015 .

[10]  Yuan Kang,et al.  Microstructure and tribological properties of gas tungsten arc clad TiC composite coatings on carbon steel , 2014 .

[11]  T. N. Baker,et al.  Influence of shielding gases on preheat produced in surface coatings incorporating SiC particulates into microalloy steel using TIG technique , 2014 .

[12]  N. Ahmad,et al.  Thermal decomposition kinetics of sodium carboxymethyl cellulose: Model-free methods , 2014 .

[13]  S. Nowotny,et al.  1.18 – Coatings by Laser Cladding , 2014 .

[14]  D. Guida,et al.  Using the Sodium Carboxymethylcellulose ( CMC ) asviscosity modifier to model the interstitial fluid in laboratory debris flows , 2014 .

[15]  Qingwen Wang,et al.  Thermal Properties of Carboxymethylcellulose and Methyl Methacrylate Graft Copolymers , 2013 .

[16]  B. Khaled,et al.  Rheological and electrokinetic properties of carboxymethylcellulose-water dispersions in the presence of salts , 2012 .

[17]  Q. Jiang,et al.  The mechanism of thermal explosion (TE) synthesis of TiC–TiB2 particulate locally reinforced steel matrix composites from an Al–Ti–B4C system via a TE-casting route , 2012 .

[18]  N. Ghasemi,et al.  Graft Copolymerization Methacrylamide Monomer onto Carboxymethyl Cellulose in Homogeneous Solution and Optimization of Effective Parameters , 2012 .

[19]  A. Kołbus,et al.  Composite layers fabricated by in situ technique in iron castings , 2011 .

[20]  Yunhua Xu,et al.  Fabrication of WC/Fe composite coating by centrifugal casting plus in-situ synthesis techniques , 2010 .

[21]  A. Kołbus,et al.  The morphology of TiC carbides produced in surface layers of carbon steel castings , 2010 .

[22]  Wei Li,et al.  Study on hydrogen bonds of carboxymethyl cellulose sodium film with two-dimensional correlation infrared spectroscopy , 2009 .

[23]  O. Assis,et al.  Thermal degradation of carboxymethylcellulose in different salty forms , 2009 .

[24]  J. Schubert,et al.  Activated pressureless infiltration of metal-matrix composites with graded activator content , 2009 .

[25]  Q. Jiang,et al.  Self-propagating high-temperature synthesis of TiCxNy–TiB2 ceramics from a Ti–B4C–BN system , 2009 .

[26]  Guifang Wang,et al.  Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer , 2009 .

[27]  S. Jain,et al.  Erosion wear behavior of laser clad surfaces of low carbon austenitic steel , 2009 .

[28]  A. Kołbus,et al.  FGMs generated method SHSM , 2009 .

[29]  N. Dahotre,et al.  Pulsed laser synthesis of ceramic-metal composite coating on steel , 2008 .

[30]  K. Asano,et al.  Formation of In Situ Composite Layer on Magnesium Alloy Surface by Casting Process , 2008 .

[31]  Q. Jiang,et al.  Combustion synthesis of TiCx-TiB2 composites with hypoeutectic, eutectic and hypereutectic microstructures , 2008 .

[32]  Haiping Yang,et al.  Characteristics of hemicellulose, cellulose and lignin pyrolysis , 2007 .

[33]  H. Kumar,et al.  TiC reinforced composite layer formation on Al–Si alloy by laser processing , 2007 .

[34]  M. Kannan,et al.  X-ray Diffraction (XRD) Studies on the Chemical States of Some Metal Species in Cellulosic Chars and the Ellingham Diagrams , 2007 .

[35]  Fangzhou Han,et al.  In situ production of Fe–TiC surface composite coatings by tungsten-inert gas heat source , 2006 .

[36]  Q. Jiang,et al.  Effect of Fe content in Fe–Ti–B system on fabricating TiB2 particulate locally reinforced steel matrix composites , 2006 .

[37]  J. Kuebler,et al.  Processing and microstructure of metal matrix composites prepared by pressureless Ti-activated infiltration using Fe-base and Ni-base alloys , 2005 .

[38]  D. Biswal,et al.  Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer , 2004 .

[39]  T. Yue,et al.  In situ synthesis of TiC reinforced surface MMC on Al6061 by laser surface alloying , 2002 .

[40]  E. Rudnik,et al.  Etery celulozy. Metody otrzymywania, zastosowanie oraz sytuacja rynkowa , 2002 .

[41]  S. Seetharamu,et al.  Review on TiC reinforced steel composites , 2001 .

[42]  M. Wada,et al.  Graphitization of highly crystalline cellulose , 2001 .

[43]  M. Wada,et al.  High-yield Carbonization of Cellulose by Sulfuric Acid Impregnation , 2001 .

[44]  T. Ganga Devi,et al.  Gasification of biomass chars in air : Effect of heat treatment temperature , 2000 .

[45]  A. Merzhanov,et al.  Combustion processes that synthesize materials , 1996 .

[46]  G. N. Richards,et al.  Potassium catalysis in air gasification of cellulosic chars , 1990 .

[47]  Thomas A. Milne,et al.  Molecular characterization of the pyrolysis of biomass , 1987 .