Key enzymes of degradation and angiogenesis as factors of tumor progression for squamous-cell cervical carcinoma

[1]  T. Wieland,et al.  Angiotensin II modulates VEGF-driven angiogenesis by opposing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium. , 2012, Cellular signalling.

[2]  H. Kajiyama,et al.  Role of the renin-angiotensin system in gynecologic cancers. , 2011, Current cancer drug targets.

[3]  C. Gialeli,et al.  Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting , 2011, The FEBS journal.

[4]  Ø. Bruserud,et al.  The crosstalk between the matrix metalloprotease system and the chemokine network in acute myeloid leukemia. , 2010, Current medicinal chemistry.

[5]  Z. Werb,et al.  Matrix Metalloproteinases: Regulators of the Tumor Microenvironment , 2010, Cell.

[6]  C. Overall,et al.  Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. , 2010, Biochimica et biophysica acta.

[7]  J. Quigley,et al.  Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. , 2010, Biochimica et biophysica acta.

[8]  M. Moses,et al.  Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  L. O’Driscoll Current Cancer Drug Targets , 2009 .

[10]  H. Nagase,et al.  Progress in matrix metalloproteinase research. , 2008, Molecular aspects of medicine.

[11]  Jaclyn H Neo,et al.  The renin-angiotensin system and malignancy. , 2008, Carcinogenesis.

[12]  S. Morais,et al.  Stromal cells play a role in cervical cancer progression mediated by MMP-2 protein. , 2008, European journal of gynaecological oncology.

[13]  C. Yeo,et al.  Angiotensin II Induces Vascular Endothelial Growth Factor in Pancreatic Cancer Cells Through an Angiotensin II Type 1 Receptor and ERK1/2 Signaling , 2007, Journal of Gastrointestinal Surgery.

[14]  Z. Han,et al.  Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. , 2006, Histology and histopathology.

[15]  H. Kajiyama,et al.  Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival , 2006, British Journal of Cancer.

[16]  B. Fingleton Matrix metalloproteinases: roles in cancer and metastasis. , 2006, Frontiers in bioscience : a journal and virtual library.

[17]  T. Turpeenniemi‐Hujanen,et al.  Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. , 2005, Biochimie.

[18]  A. Fukamizu,et al.  Angiotensin type 1a receptor signaling-dependent induction of vascular endothelial growth factor in stroma is relevant to tumor-associated angiogenesis and tumor growth. , 2004, Carcinogenesis.

[19]  O. Arrieta,et al.  Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. , 2004, Current vascular pharmacology.

[20]  I. Adcock,et al.  The Journal of Inflammation , 2004, Journal of Inflammation.

[21]  H. Kajiyama,et al.  Activation of invasiveness of cervical carcinoma cells by angiotensin II. , 2004, American journal of obstetrics and gynecology.

[22]  W. Kamps,et al.  The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. , 2004, Critical reviews in oncology/hematology.

[23]  S. Chow,et al.  Increased expression and activation of gelatinolytic matrix metalloproteinases is associated with the progression and recurrence of human cervical cancer. , 2003, Cancer research.

[24]  P. Flemming,et al.  MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study. , 2002, Gynecologic oncology.

[25]  B. Sheu,et al.  A novel role of metalloproteinase in cancer-mediated immunosuppression. , 2001, Cancer research.

[26]  Shigeyoshi Itohara,et al.  Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis , 2000, Nature Cell Biology.

[27]  N. V. Golubeva,et al.  Proteolytic enzymes in human leukemic lymphoid cells. III. Aminopeptidases, angiotensin-converting enzyme, and its inhibitor in cells of different immunological phenotype. , 1999, Biochemistry. Biokhimiia.

[28]  F. Balkwill,et al.  Zymography: a single-step staining method for quantitation of proteolytic activity on substrate gels. , 1997, Analytical biochemistry.

[29]  G. Murphy,et al.  [28] Gelatinases A and B , 1995 .

[30]  M. Gerretsen,et al.  A phase III randomised trial of cisplatinum, methotrextate, cisplatinum + methotrexate and cisplatinum + 5-FU in end stage squamous carcinoma of the head and neck. Liverpool Head and Neck Oncology Group. , 1990, British Journal of Cancer.

[31]  W. Gardner,et al.  Carcinogenesis , 1961, The Yale Journal of Biology and Medicine.