Optimal approximation of elliptic problems by linear and nonlinear mappings I
暂无分享,去创建一个
[1] Claudio Canuto,et al. The wavelet element method. Part I: Construction and analysis. , 1997 .
[2] A. Pietsch,et al. s-Numbers of operators in Banach spaces , 1974 .
[3] K. Deimling. Nonlinear functional analysis , 1985 .
[4] Erich Novak,et al. On the Power of Adaption , 1996, J. Complex..
[5] Carlos E. Kenig,et al. The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .
[6] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[7] Zhongwei Shen. The Lp boundary value problems on Lipschitz domains , 2006 .
[8] T. Figiel,et al. Spline bases in classical function spaces on compact $C^{∞}$ manifolds, Part I , 1983 .
[9] A. Kufner,et al. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutscher Verlag der Wissenschaften 1978. 528 S., M 87,50 , 1979 .
[10] Peter Oswald,et al. Multilevel Finite Element Approximation , 1994 .
[11] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[12] Stefan Heinrich. The quantum query complexity of elliptic PDE , 2006 .
[13] Andreas Seeger,et al. A note on Triebel-Lizorkin spaces , 1989 .
[14] H. Woxniakowski. Information-Based Complexity , 1988 .
[15] H. Triebel. Theory of Function Spaces III , 2008 .
[16] H. Triebel,et al. Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .
[17] Jaak Peetre,et al. Function spaces on subsets of Rn , 1984 .
[18] Dinh Dung,et al. Continuous Algorithms in n-Term Approximation and Non-Linear Widths , 2000 .
[19] J. Peetre. New thoughts on Besov spaces , 1976 .
[20] C. Micchelli,et al. Optimal Sequential and Non-Sequential Procedures for Evaluating a Functional. , 1980 .
[21] B. Jawerth,et al. A discrete transform and decompositions of distribution spaces , 1990 .
[22] P. Grisvard,et al. Singularities in Boundary Value Problems and Exact Controllability of Hyperbolic Systems , 1992 .
[23] P. Grisvard,et al. BEHAVIOR OF THE SOLUTIONS OF AN ELLIPTIC BOUNDARY VALUE PROBLEM IN A POLYGONAL OR POLYHEDRAL DOMAIN , 1976 .
[24] R. DeVore,et al. Interpolation spaces and non-linear approximation , 1988 .
[25] Stephan Dahlke,et al. Besov regularity for elliptic boundary value problems in polygonal domains , 1999 .
[26] Stefan Heinrich,et al. The randomized information complexity of elliptic PDE , 2006, J. Complex..
[27] Erich Novak,et al. The Real Number Model in Numerical Analysis , 1995, J. Complex..
[28] Dany Leviatan,et al. Wavelet compression and nonlinearn-widths , 1993, Adv. Comput. Math..
[29] Sergei V. Pereverzyev. Optimization of Methods for Approximate Solution of Operator Equations , 1996 .
[30] Henryk Wozniakowski,et al. A general theory of optimal algorithms , 1980, ACM monograph series.
[31] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[32] M. Fowler,et al. Function Spaces , 2022 .
[33] Winfried Sickel,et al. !ENTROPY NUMBERS OF EMBEDDINGS OF WEIGHTED BESOV SPACES. II , 2006, Proceedings of the Edinburgh Mathematical Society.
[34] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[35] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[36] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..
[37] R. DeVore,et al. Besov regularity for elliptic boundary value problems , 1997 .
[38] Wolfgang Dahmen,et al. Multiscale Wavelet Methods for Partial Differential Equations , 1997 .
[39] Jens Markus Melenk,et al. On n-widths for elliptic problems , 1998 .
[40] António M. Caetano,et al. About Approximation Numbers in Function Spaces , 1998 .
[41] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[42] Arthur G. Werschulz. Complexity of differential and integral equations , 1985, J. Complex..
[43] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[44] Ronald A. DeVore,et al. Besov spaces on domains in , 1993 .
[45] V. Temlyakov,et al. Greedy Algorithms with Regard to Multivariate Systems with Special Structure , 1997 .
[46] Stephan Dahlke,et al. Besov regularity for second order elliptic boundary value problems with variable coefficients , 1998 .
[47] Dinh Dung,et al. On nonlinear -widths , 1996 .
[48] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[49] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[50] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[51] J. Bowen,et al. s -numbers in information-based complexity , 1990 .
[52] Erich Novak,et al. Optimal approximation of elliptic problems by linear and nonlinear mappings III: Frames , 2007, J. Complex..
[53] Vyacheslav S. Rychkov,et al. On Restrictions and Extensions of the Besov and Triebel–Lizorkin Spaces with Respect to Lipschitz Domains , 1999 .
[54] A. Pietsch. Eigenvalues and S-Numbers , 1987 .
[55] Ronald A. DeVore,et al. Best Basis Selection for Approximation in Lp , 2003, Found. Comput. Math..
[56] Ralf Kornhuber,et al. A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .
[57] A. I. Stepanets. Approximation Characteristics of the Spaces Spϕ in Different Metrics , 2001 .
[58] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[59] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[60] Zhongwei Shen,et al. Boundary Value Problems on Lipschitz Domains , 2008 .
[61] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[62] K. Gröchenig. Describing functions: Atomic decompositions versus frames , 1991 .
[63] M. Nikolskii,et al. Approximation of Functions of Several Variables and Embedding Theorems , 1971 .
[64] Ronald A. DeVore,et al. Multiscale Characterizations of Besov Spaces on Bounded Domains , 1998 .
[65] P. Oswald. On the degree of nonlinear spline approximation in Besov-Sobolev spaces , 1990 .
[66] Vladimir N. Temlyakov,et al. Nonlinear Methods of Approximation , 2003, Found. Comput. Math..
[67] G. Bourdaud. Ondelettes et espaces de Besov , 1995 .
[68] R. DeVore,et al. BESOV SPACES ON DOMAINS IN Rd , 1993 .
[69] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[70] S. Dahlke. Besov regularity for interface problems , 1999 .
[71] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[72] D. Dung,et al. ON NONLINEAR n -WIDTHS , 1996 .
[73] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[74] Sophie Dispa,et al. Intrinsic characterizations of Besov spaces on Lipschitz domains , 2003 .
[75] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[76] Annie A. M. Cuyt,et al. Approximation Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.
[77] Wolfgang Dahmen,et al. Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..
[78] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[79] Arthur G. Werschulz,et al. Computational complexity of differential and integral equations - an information-based approach , 1991, Oxford mathematical monographs.
[80] Martin Costabel,et al. Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .
[81] G. Alexits. Approximation theory , 1983 .
[82] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[83] Winfried Sickel,et al. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.
[84] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[85] R. Bruce Kellogg,et al. n -Widths and Singularly Perturbed Boundary Value Problems , 1999 .
[86] H. Triebel. Theory Of Function Spaces , 1983 .
[87] A. Kolmogoroff,et al. Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .
[88] Wolfgang Dahmen,et al. Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations , 1997 .
[89] R. DeVore,et al. Multiscale decompositions on bounded domains , 2000 .
[90] Wolfgang Dahmen,et al. Stable multiscale bases and local error estimation for elliptic problems , 1997 .
[91] Claes Johnson,et al. Adaptive error control for multigrid finite element , 1995, Computing.
[92] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[93] Erich Novak,et al. Complexity of Linear Problems with a Fixed Output Basis , 2000, J. Complex..
[94] Henryk Wozniakowski,et al. On the Cost of Uniform and Nonuniform Algorithms , 1999, Theor. Comput. Sci..
[95] R. DeVore,et al. Compression of wavelet decompositions , 1992 .
[96] Y. Meyer. Wavelets and Operators , 1993 .
[97] G. Kyriazis,et al. Decomposition systems for function spaces , 2003 .
[98] Arthur G. Werschulz. Finite element methods are not always optimal , 1987 .
[99] B. Carl. Entropy numbers, s-numbers, and eigenvalue problems , 1981 .
[100] H. Triebel,et al. Function Spaces in Lipschitz Domains and Optimal Rates of Convergence for Sampling , 2006 .
[101] N. S. Bakhvalov,et al. On the optimality of linear methods for operator approximation in convex classes of functions , 1971 .
[102] Hans Triebel,et al. A note on wavelet bases in function spaces , 2004 .
[103] W. Hackbusch. Elliptic Differential Equations , 1992 .
[104] Hans Triebel,et al. Function spaces in Lipschitz domains and on Lipschitz manifolds , 2002 .
[105] H. Triebel,et al. Topics in Fourier Analysis and Function Spaces , 1987 .
[106] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[107] Peter Mathé. s-Numbers in information-based complexity , 1990, J. Complex..
[108] H. Triebel. The Structure of Functions , 2001 .
[109] Vladimir Temlyakov,et al. Universal bases and greedy algorithms for anisotropic function classes , 2002 .
[110] E. D'yakonov. Optimization in Solving Elliptic Problems , 1995 .
[111] R. DeVore,et al. Optimal nonlinear approximation , 1989 .
[112] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[113] K. Gröchenig. Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .
[114] W. Dahmen,et al. Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .
[115] R. DeVore,et al. Nonlinear Approximation by Trigonometric Sums , 1995 .
[116] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..
[117] David Jerison,et al. The Neumann problem on Lipschitz domains , 1981 .
[118] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .