Optimal approximation of elliptic problems by linear and nonlinear mappings I

We study the optimal approximation of the solution of an operator equation Au=f by linear mappings of rank n and compare this with the best n-term approximation with respect to an optimal Riesz basis. We consider worst case errors, where f is an element of the unit ball of a Hilbert space. We apply our results to boundary value problems for elliptic PDEs on an arbitrary bounded Lipschitz domain. Here we prove that approximation by linear mappings is as good as the best n-term approximation with respect to an optimal Riesz basis. Our results are concerned with approximation, not with computation. Our goal is to understand better the possibilities of nonlinear approximation.

[1]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[2]  A. Pietsch,et al.  s-Numbers of operators in Banach spaces , 1974 .

[3]  K. Deimling Nonlinear functional analysis , 1985 .

[4]  Erich Novak,et al.  On the Power of Adaption , 1996, J. Complex..

[5]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[6]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[7]  Zhongwei Shen The Lp boundary value problems on Lipschitz domains , 2006 .

[8]  T. Figiel,et al.  Spline bases in classical function spaces on compact $C^{∞}$ manifolds, Part I , 1983 .

[9]  A. Kufner,et al.  Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutscher Verlag der Wissenschaften 1978. 528 S., M 87,50 , 1979 .

[10]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[11]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[12]  Stefan Heinrich The quantum query complexity of elliptic PDE , 2006 .

[13]  Andreas Seeger,et al.  A note on Triebel-Lizorkin spaces , 1989 .

[14]  H. Woxniakowski Information-Based Complexity , 1988 .

[15]  H. Triebel Theory of Function Spaces III , 2008 .

[16]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[17]  Jaak Peetre,et al.  Function spaces on subsets of Rn , 1984 .

[18]  Dinh Dung,et al.  Continuous Algorithms in n-Term Approximation and Non-Linear Widths , 2000 .

[19]  J. Peetre New thoughts on Besov spaces , 1976 .

[20]  C. Micchelli,et al.  Optimal Sequential and Non-Sequential Procedures for Evaluating a Functional. , 1980 .

[21]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[22]  P. Grisvard,et al.  Singularities in Boundary Value Problems and Exact Controllability of Hyperbolic Systems , 1992 .

[23]  P. Grisvard,et al.  BEHAVIOR OF THE SOLUTIONS OF AN ELLIPTIC BOUNDARY VALUE PROBLEM IN A POLYGONAL OR POLYHEDRAL DOMAIN , 1976 .

[24]  R. DeVore,et al.  Interpolation spaces and non-linear approximation , 1988 .

[25]  Stephan Dahlke,et al.  Besov regularity for elliptic boundary value problems in polygonal domains , 1999 .

[26]  Stefan Heinrich,et al.  The randomized information complexity of elliptic PDE , 2006, J. Complex..

[27]  Erich Novak,et al.  The Real Number Model in Numerical Analysis , 1995, J. Complex..

[28]  Dany Leviatan,et al.  Wavelet compression and nonlinearn-widths , 1993, Adv. Comput. Math..

[29]  Sergei V. Pereverzyev Optimization of Methods for Approximate Solution of Operator Equations , 1996 .

[30]  Henryk Wozniakowski,et al.  A general theory of optimal algorithms , 1980, ACM monograph series.

[31]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[32]  M. Fowler,et al.  Function Spaces , 2022 .

[33]  Winfried Sickel,et al.  !ENTROPY NUMBERS OF EMBEDDINGS OF WEIGHTED BESOV SPACES. II , 2006, Proceedings of the Edinburgh Mathematical Society.

[34]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[35]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[36]  Massimo Fornasier,et al.  Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..

[37]  R. DeVore,et al.  Besov regularity for elliptic boundary value problems , 1997 .

[38]  Wolfgang Dahmen,et al.  Multiscale Wavelet Methods for Partial Differential Equations , 1997 .

[39]  Jens Markus Melenk,et al.  On n-widths for elliptic problems , 1998 .

[40]  António M. Caetano,et al.  About Approximation Numbers in Function Spaces , 1998 .

[41]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[42]  Arthur G. Werschulz Complexity of differential and integral equations , 1985, J. Complex..

[43]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[44]  Ronald A. DeVore,et al.  Besov spaces on domains in , 1993 .

[45]  V. Temlyakov,et al.  Greedy Algorithms with Regard to Multivariate Systems with Special Structure , 1997 .

[46]  Stephan Dahlke,et al.  Besov regularity for second order elliptic boundary value problems with variable coefficients , 1998 .

[47]  Dinh Dung,et al.  On nonlinear -widths , 1996 .

[48]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[49]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[50]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[51]  J. Bowen,et al.  s -numbers in information-based complexity , 1990 .

[52]  Erich Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings III: Frames , 2007, J. Complex..

[53]  Vyacheslav S. Rychkov,et al.  On Restrictions and Extensions of the Besov and Triebel–Lizorkin Spaces with Respect to Lipschitz Domains , 1999 .

[54]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[55]  Ronald A. DeVore,et al.  Best Basis Selection for Approximation in Lp , 2003, Found. Comput. Math..

[56]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[57]  A. I. Stepanets Approximation Characteristics of the Spaces Spϕ in Different Metrics , 2001 .

[58]  M. Fornasier,et al.  Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .

[59]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[60]  Zhongwei Shen,et al.  Boundary Value Problems on Lipschitz Domains , 2008 .

[61]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[62]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[63]  M. Nikolskii,et al.  Approximation of Functions of Several Variables and Embedding Theorems , 1971 .

[64]  Ronald A. DeVore,et al.  Multiscale Characterizations of Besov Spaces on Bounded Domains , 1998 .

[65]  P. Oswald On the degree of nonlinear spline approximation in Besov-Sobolev spaces , 1990 .

[66]  Vladimir N. Temlyakov,et al.  Nonlinear Methods of Approximation , 2003, Found. Comput. Math..

[67]  G. Bourdaud Ondelettes et espaces de Besov , 1995 .

[68]  R. DeVore,et al.  BESOV SPACES ON DOMAINS IN Rd , 1993 .

[69]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[70]  S. Dahlke Besov regularity for interface problems , 1999 .

[71]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[72]  D. Dung,et al.  ON NONLINEAR n -WIDTHS , 1996 .

[73]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[74]  Sophie Dispa,et al.  Intrinsic characterizations of Besov spaces on Lipschitz domains , 2003 .

[75]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[76]  Annie A. M. Cuyt,et al.  Approximation Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[77]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[78]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[79]  Arthur G. Werschulz,et al.  Computational complexity of differential and integral equations - an information-based approach , 1991, Oxford mathematical monographs.

[80]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[81]  G. Alexits Approximation theory , 1983 .

[82]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[83]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[84]  B. Carl,et al.  Entropy, Compactness and the Approximation of Operators , 1990 .

[85]  R. Bruce Kellogg,et al.  n -Widths and Singularly Perturbed Boundary Value Problems , 1999 .

[86]  H. Triebel Theory Of Function Spaces , 1983 .

[87]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[88]  Wolfgang Dahmen,et al.  Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations , 1997 .

[89]  R. DeVore,et al.  Multiscale decompositions on bounded domains , 2000 .

[90]  Wolfgang Dahmen,et al.  Stable multiscale bases and local error estimation for elliptic problems , 1997 .

[91]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[92]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[93]  Erich Novak,et al.  Complexity of Linear Problems with a Fixed Output Basis , 2000, J. Complex..

[94]  Henryk Wozniakowski,et al.  On the Cost of Uniform and Nonuniform Algorithms , 1999, Theor. Comput. Sci..

[95]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[96]  Y. Meyer Wavelets and Operators , 1993 .

[97]  G. Kyriazis,et al.  Decomposition systems for function spaces , 2003 .

[98]  Arthur G. Werschulz Finite element methods are not always optimal , 1987 .

[99]  B. Carl Entropy numbers, s-numbers, and eigenvalue problems , 1981 .

[100]  H. Triebel,et al.  Function Spaces in Lipschitz Domains and Optimal Rates of Convergence for Sampling , 2006 .

[101]  N. S. Bakhvalov,et al.  On the optimality of linear methods for operator approximation in convex classes of functions , 1971 .

[102]  Hans Triebel,et al.  A note on wavelet bases in function spaces , 2004 .

[103]  W. Hackbusch Elliptic Differential Equations , 1992 .

[104]  Hans Triebel,et al.  Function spaces in Lipschitz domains and on Lipschitz manifolds , 2002 .

[105]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[106]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[107]  Peter Mathé s-Numbers in information-based complexity , 1990, J. Complex..

[108]  H. Triebel The Structure of Functions , 2001 .

[109]  Vladimir Temlyakov,et al.  Universal bases and greedy algorithms for anisotropic function classes , 2002 .

[110]  E. D'yakonov Optimization in Solving Elliptic Problems , 1995 .

[111]  R. DeVore,et al.  Optimal nonlinear approximation , 1989 .

[112]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[113]  K. Gröchenig Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .

[114]  W. Dahmen,et al.  Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .

[115]  R. DeVore,et al.  Nonlinear Approximation by Trigonometric Sums , 1995 .

[116]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..

[117]  David Jerison,et al.  The Neumann problem on Lipschitz domains , 1981 .

[118]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .