Spectral analysis of the interior transmission eigenvalue problem

In this paper we prove some results on interior transmission eigenvalues. First, under reasonable assumptions, we prove that the spectrum is a discrete countable set and that the generalized eigenfunctions span a dense subspace in the range of resolvent. This is a consequence of the spectral theory of Hilbert–Schmidt operators. The main ingredient is the proof of a smoothing property of the resolvent. This allows us to prove that a power of the resolvent is Hilbert–Schmidt. We obtain an estimate of the number of eigenvalues, counted with multiplicities, with modulus less than t2 when t is large. We also prove some estimate on the resolvent near the real axis when the square of the refraction index is not real. Under some assumptions we obtain a lower bound for the resolvent using results obtained by Dencker, Sjostrand and Zworski on the pseudospectrum.

[1]  Luc Robbiano,et al.  Carleman estimates for the Zaremba Boundary Condition and Stabilization of Waves , 2011, 1110.5164.

[2]  Petri Ola,et al.  Transmission Eigenvalues for Elliptic Operators , 2010, SIAM J. Math. Anal..

[3]  M. Zworski,et al.  Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .

[4]  D. Colton,et al.  Transmission eigenvalues and the nondestructive testing of dielectrics , 2008 .

[5]  M. Zworski A remark on a paper of E. B. Davies , 2001 .

[6]  Ari Laptev,et al.  Nonlinear eigenvalues and analytic hypoellipticity , 2002 .

[7]  Evgeny Lakshtanov,et al.  Bounds on positive interior transmission eigenvalues , 2012, 1206.3782.

[8]  Didier Robert Non linear eigenvalue problems , 2004 .

[9]  L. B. D. Monvel Boundary problems for pseudo-differential operators , 1971 .

[10]  D. Colton,et al.  The interior transmission problem , 2007 .

[11]  Petri Ola,et al.  The interior transmission problem and bounds on transmission eigenvalues , 2010, 1009.5640.

[12]  E. Davies Semi-Classical States for Non-Self-Adjoint Schrödinger Operators , 1998, math/9803129.

[13]  Michael E. Taylor,et al.  The Analysis of Linear Partial Differential Operators, Vols I & II. , 1985 .

[14]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[15]  Semiclassical analysis of a nonlinear eigenvalue problem and nonanalytic hypoellipticity , 2003, math/0304201.

[16]  E. Lakshtanov,et al.  Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem , 2012, 1212.6785.

[17]  Evgeny Lakshtanov,et al.  Ellipticity in the Interior Transmission Problem in Anisotropic Media , 2012, SIAM J. Math. Anal..

[18]  David Colton,et al.  Dense sets and far field patterns for acoustic waves in an inhomogeneous medium , 1988, Proceedings of the Edinburgh Mathematical Society.

[19]  Fioralba Cakoni,et al.  The Interior Transmission Problem for Regions with Cavities , 2010, SIAM J. Math. Anal..

[20]  D. E. Edmunds THE ANALYSIS OF LINEAR PARTIAL DIFFERENTIAL OPERATORS I–IV (Grundlehren der mathematischen Wissenschaften 256, 257, 274, 275) , 1987 .

[21]  V. Zvyagin,et al.  Attractors of equations of non-Newtonian fluid dynamics , 2014 .

[22]  Petri Ola,et al.  Transmission Eigenvalues for Operators with Constant Coefficients , 2010, SIAM J. Math. Anal..

[23]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[24]  V. Matveev,et al.  Multi-rogue waves solutions: from the NLS to the KP-I equation , 2013 .

[25]  H. Haddar,et al.  Transmission Eigenvalues in Inverse Scattering Theory , 2012 .

[26]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[27]  G. Lebeau,et al.  Stabilisation de l’équation des ondes par le bord , 1997 .

[28]  John Sylvester,et al.  Discreteness of Transmission Eigenvalues via Upper Triangular Compact Operators , 2011, SIAM J. Math. Anal..

[29]  Evgeny Lakshtanov,et al.  Remarks on interior transmission eigenvalues, Weyl formula and branching billiards , 2011, 1112.0891.

[30]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[31]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[32]  Fioralba Cakoni,et al.  Transmission Eigenvalues , 2021, Applied Mathematical Sciences.