Transcription alterations of members of the ubiquitin–proteasome network in prostate carcinoma

[1]  Sven Diederichs,et al.  The hallmarks of cancer , 2012, RNA biology.

[2]  J. Sosman,et al.  A Phase I Trial of Bortezomib with Temozolomide in Patients with Advanced Melanoma: Toxicities, Antitumor Effects, and Modulation of Therapeutic Targets , 2009, Clinical Cancer Research.

[3]  Vijayalakshmi Ananthanarayanan,et al.  Evidence for field cancerization of the prostate , 2009, The Prostate.

[4]  J. Huang,et al.  Nedd4L expression is downregulated in prostate cancer compared to benign prostatic hyperplasia. , 2009, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[5]  D. Danielpour,et al.  Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells. , 2009, Cancer research.

[6]  K. Miyazono,et al.  Pin1 Down-regulates Transforming Growth Factor-β (TGF-β) Signaling by Inducing Degradation of Smad Proteins* , 2009, Journal of Biological Chemistry.

[7]  M. Anver,et al.  Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness. , 2009, Cancer research.

[8]  K. Miyazawa,et al.  Smurf2 Induces Ubiquitin-dependent Degradation of Smurf1 to Prevent Migration of Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[9]  T. Schlomm,et al.  A comprehensive analysis of transcript signatures of the phosphatidylinositol‐3 kinase/protein kinase B signal‐transduction pathway in prostate cancer , 2008, BJU international.

[10]  Ceshi Chen,et al.  The Nedd4-like family of E3 ubiquitin ligases and cancer , 2007, Cancer and Metastasis Reviews.

[11]  Shishan Deng,et al.  Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics , 2007, Breast Cancer Research and Treatment.

[12]  G. Peters,et al.  A Parallel Dose-Escalation Study of Weekly and Twice-Weekly Bortezomib in Combination with Gemcitabine and Cisplatin in the First-Line Treatment of Patients with Advanced Solid Tumors , 2007, Clinical Cancer Research.

[13]  D. Agus,et al.  Phase I/II Study of Bortezomib Plus Docetaxel in Patients with Advanced Androgen-Independent Prostate Cancer , 2007, Clinical Cancer Research.

[14]  D. Esseltine,et al.  Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. , 2005, Blood.

[15]  R. Mayer,et al.  The ubiquitin-proteasome system and cancer. , 2005, Essays in biochemistry.

[16]  Holger Sültmann,et al.  Extraction and processing of high quality RNA from impalpable and macroscopically invisible prostate cancer for microarray gene expression analysis. , 2005, International journal of oncology.

[17]  E. Gelmann,et al.  The ubiquitin-proteasome pathway and its role in cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  Hartmut Goldschmidt,et al.  Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. , 2005, The New England journal of medicine.

[19]  K. Miyazono,et al.  NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor , 2005 .

[20]  C. Pickart,et al.  Ubiquitin: structures, functions, mechanisms. , 2004, Biochimica et biophysica acta.

[21]  A. Seth,et al.  The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. , 2004, European journal of cancer.

[22]  E. Dees,et al.  The proteasome as a target for cancer therapy. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[23]  C. Labrie,et al.  Androgens differentially regulate the expression of NEDD4L transcripts in LNCaP human prostate cancer cells , 2003, Molecular and Cellular Endocrinology.

[24]  Kyucheol Cho,et al.  Transforming growth factor-β1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-κB, JNK, and Ras signaling pathways , 2003, Oncogene.

[25]  M. Schwab Encyclopedia Reference of Cancer , 2003 .

[26]  H. Kuwano,et al.  High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. , 2002, Cancer research.

[27]  Xia Lin,et al.  Smurf2 Is a Ubiquitin E3 Ligase Mediating Proteasome-dependent Degradation of Smad2 in Transforming Growth Factor-β Signaling* 210 , 2000, The Journal of Biological Chemistry.

[28]  A. Bergh,et al.  Transforming Growth Factor-ß1 and Prostate Cancer , 2000 .

[29]  M. Cronauer,et al.  Transforming growth factor‐β in benign and malignant prostate , 1999 .

[30]  H. Huhtala,et al.  Altered levels of Smad2 and Smad4 are associated with human prostate carcinogenesis , 2006, Prostate Cancer and Prostatic Diseases.

[31]  A. Wesołowska,et al.  TGF beta signalling and its role in tumour pathogenesis. , 2005, Acta biochimica Polonica.

[32]  K. Miyazono,et al.  NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. , 2005, The Biochemical journal.

[33]  W. Baumeister,et al.  The Proteasome — Ubiquitin Protein Degradation Pathway , 2002, Current Topics in Microbiology and Immunology.

[34]  S Kim,et al.  Microarray Gene Expression Analysis. , 2001 .

[35]  M. Cronauer,et al.  Transforming growth factor-beta in benign and malignant prostate. , 1999, The Prostate.