Structure, stability, and nature of bonding in carbon monoxide bound EX3+ complexes (E = group 14 element; X = H, F, Cl, Br, I)

A density functional theory study is performed to predict the structures and stability of carbon monoxide (CO) bound EX3+ (E = C, Si, Ge, Sn, Pb; X = H, F, Cl, Br, I) complexes. The possibility of bonding through both C‐ and O‐sides of CO is considered. Thermochemical analysis reveals that all the dissociation processes producing CO and EX3+ are endothermic in nature whereas most of the dissociation reactions are endergonic in nature at room temperature. The nature of bonding in EC/O bonds is analyzed via Wiberg bond index, natural population analysis, electron density, and energy decomposition analyses in conjunction with natural orbitals for chemical valence scheme. In comparison to CO stretching frequency ( ν∼CO ) in free CO, while a red shift is noted in O‐side binding, the C‐side binding results in a blue shift in ν∼CO . The relative change in ν∼CO values in CO bound EX3+ complexes on changing either E or X is scrutinized and possible explanation is provided in terms of polarization in the σ‐ and π‐orbitals and the relative strength of C→E or O→E σ‐donation and E→C or E→O π‐back‐donation. © 2016 Wiley Periodicals, Inc.

[1]  Ranajit Saha,et al.  A noble interaction: An assessment of noble gas binding ability of metal oxides (metal = Cu, Ag, Au) , 2016 .

[2]  S. Strauss,et al.  Infrared and manometric evidence for the formation of the [Ag(CO)3]+ complex ion at high PCO , 1994 .

[3]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[4]  Gernot Frenking,et al.  Electronic structure of CO—An exercise in modern chemical bonding theory , 2007, J. Comput. Chem..

[5]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[6]  G. Frenking,et al.  Trends in Molecular Geometries and Bond Strengths of the Homoleptic d10 Metal Carbonyl Cations [M(CO)n]x+ (Mx+=Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+; n=1–6): A Theoretical Study , 1999 .

[7]  Qiang Xu,et al.  A New Gold Catalyst: Formation of Gold(I) Carbonyl, [Au(CO)n]+ (n = 1, 2), in Sulfuric Acid and Its Application to Carbonylation of Olefins , 1997 .

[8]  G. Frenking,et al.  Theoretical Analysis of the Bonding between CO and Positively Charged Atoms , 1997 .

[9]  K. Hiraoka,et al.  Thermochemistry and structure of the cluster ions CH3+(CO)n and SiH3+(CO)n in the gas phase , 1997 .

[10]  S. Strauss,et al.  Bis(carbonyl)silver tetrakis(pentafluorooxotellurato)borate: the first structurally characterized M(CO)2 complex , 1993 .

[11]  Woo Jong Cho,et al.  Intriguing Electrostatic Potential of CO: Negative Bond-ends and Positive Bond-cylindrical-surface , 2015, Scientific Reports.

[12]  G. Frenking,et al.  Carbon monoxide bonding with BeO and BeCO3 : surprisingly high CO stretching frequency of OCBeCO3. , 2015, Angewandte Chemie.

[13]  G. Frenking,et al.  The Nature of the Transition Metal–Carbonyl Bond and the Question about the Valence Orbitals of Transition Metals. A Bond Energy Decomposition Analysis of TM(CO)6q (TMq = Hf2–, Ta1–, W0, Re1+, Os2+, Ir3+) , 2000 .

[14]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[15]  V. Baranov,et al.  Experimental and Theoretical Studies of SiFn(CO)2 + Cations with n ) 2 and 3: A Search for Pentacoordinate Cationic Silicon , 1997 .

[16]  Artur Michalak,et al.  Donor–Acceptor Properties of Ligands from the Natural Orbitals for Chemical Valence , 2007 .

[17]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[18]  G. Frenking,et al.  Nonclassical Metal Carbonyls , 2007 .

[19]  H. Willner,et al.  Syntheses and Vibrational and (13)C MAS-NMR Spectra of Bis(carbonyl)mercury(II) Undecafluorodiantimonate(V) ([Hg(CO)(2)][Sb(2)F(11)](2)) and of Bis(carbonyl)dimercury(I) Undecafluorodiantimonate ([Hg(2)(CO)(2)][Sb(2)F(11)](2)) and the Molecular Structure of [Hg(CO)(2)][Sb(2)F(11)](2). , 1996, Inorganic chemistry.

[20]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[21]  Miquel Solà,et al.  Polycyclic benzenoids: why kinked is more stable than straight. , 2007, The Journal of organic chemistry.

[22]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[23]  Keiji Morokuma,et al.  Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity , 1977 .

[24]  Artur Michalak,et al.  A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.

[25]  S. Strauss,et al.  Ag(CO)B(OTeF5)4 : the first isolable silver carbonyl , 1991 .

[26]  Elfi Kraka,et al.  Chemical Bonds without Bonding Electron Density — Does the Difference Electron‐Density Analysis Suffice for a Description of the Chemical Bond? , 1984 .

[27]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[28]  Roald Hoffmann,et al.  IS CO A SPECIAL LIGAND IN ORGANOMETALLIC CHEMISTRY? THEORETICAL INVESTIGATION OF AB, FE(CO)4AB, AND FE(AB)5 (AB = N2, CO, BF, SIO) , 1998 .

[29]  Davide M. Proserpio,et al.  Experimental Electron Density in a Transition Metal Dimer: Metal−Metal and Metal−Ligand Bonds , 1998 .

[30]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[31]  G. Frenking,et al.  Nonclassical Metal Carbonyls: Appropriate Definitions with a Theoretical Justification. , 1998, Angewandte Chemie.

[32]  G. Frenking,et al.  Observation of Main-Group Tricarbonyls [B(CO)3 ] and [C(CO)3 ](+) Featuring a Tilted One-Electron Donor Carbonyl Ligand. , 2016, Chemistry.

[33]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[34]  Philip Coppens,et al.  Theoretical analysis of the triplet excited state of the [Pt2(H2P2O5)4]4- ion and comparison with time-resolved X-ray and spectroscopic results. , 2003, Journal of the American Chemical Society.

[35]  K. Hiraoka,et al.  On the Structure and Stability of Gas-Phase Cluster Ions SiF3+(CO)n, SiF3OH2+(SiF4)n, SiF4H+(SiF4)n, and F-(SiF4)n , 2000 .

[36]  L. A. Duncanson,et al.  586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes , 1953 .

[37]  G. Frenking,et al.  Formation and characterization of the boron dicarbonyl complex [B(CO)2](-). , 2015, Angewandte Chemie.

[38]  Jerzy Cioslowski,et al.  Universality among topological properties of electron density associated with the hydrogen–hydrogen nonbonding interactions , 1992 .

[39]  R. Jones,et al.  Bis(carbonyl)gold(I) undecafluorodiantimonate(V), [Au(CO)2][Sb2F11]: synthesis, vibrational, and carbon-13 NMR study and the molecular structure of bis(acetonitrile)gold(I) hexafluoroantimonate(V), [Au(NCCH3)2][SbF6] , 1992 .

[40]  G. Frenking,et al.  Structure and Bonding of the Isoelectronic Hexacarbonyls [Hf(CO)6]2-, [Ta(CO)6]-, W(CO)6, [Re(CO)6]+, [Os(CO)6]2+, and [Ir(CO)6]3+: A Theoretical Study1 , 1997 .

[41]  G. Frenking,et al.  The π-Donor Ability of the Halogens in Cations and Neutral Molecules. A Theoretical Study of AX3+, AH2X+, YX3, and YH2X (A = C, Si, Ge, Sn, Pb; Y = B, Al, Ga, In, Tl; X = F, Cl, Br, I) , 1997 .

[42]  Piero Macchi,et al.  Charge Density in Transition Metal Clusters: Supported vs Unsupported Metal−Metal Interactions , 1999 .

[43]  Kelling J. Donald,et al.  Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. , 2009, Chemistry.

[44]  Pratim K Chattaraj,et al.  Metastable behavior of noble gas inserted tin and lead fluorides. , 2015, Physical chemistry chemical physics : PCCP.

[45]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[46]  K. Krogh-Jespersen,et al.  Why Do Cationic Carbon Monoxide Complexes Have High C−O Stretching Force Constants and Short C−O Bonds? Electrostatic Effects, Not σ-Bonding , 1996 .

[47]  Alberto Vela,et al.  The implications of symmetry of the external potential on bond paths. , 2008, Chemistry.

[48]  L. Andrews,et al.  Reactions of Pulsed-Laser-Evaporated Be Atoms with CO2. Infrared Spectra of OCBeO and COBeO in Solid Argon , 1994 .

[49]  Sreyan Ghosh,et al.  Structure and stability of noble gas bound EX3+ compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br) , 2016, J. Comput. Chem..

[50]  Ranajit Saha,et al.  σ-Aromatic cyclic M3(+) (M = Cu, Ag, Au) clusters and their complexation with dimethyl imidazol-2-ylidene, pyridine, isoxazole, furan, noble gases and carbon monoxide. , 2016, Physical chemistry chemical physics : PCCP.

[51]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[52]  Artur Michalak,et al.  Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules , 2008, Journal of molecular modeling.