Thermal regulation of building-integrated photovoltaics using phase change materials

Elevated operating temperatures reduce the efficiency of photovoltaic devices. The use of a phase change material to moderate building integrated photovoltaic temperature rise has been investigated by experiments and numerical simulations. Experimental data are used to validate the previously developed two-dimensional finite volume heat transfer model conjugated hydrodynamically to solve the Navier–Stokes and energy equations. A parametric study of a design application is also reported. Temperatures, velocity fields and vortex formation within the system were predicted for a variety of configurations using the experimentally validated numerical model. Temperature distributions predicted fordifferent insolation and ambient temperatures at the photovoltaic surface show that the moderation of temperature achieved can lead to significant improvements in the operational efficiency of photovoltaic facades.

[1]  M. J. Huang,et al.  Chapter 454 – The Application of Computational Fluid Dynamics to Predict the Performance of Phase Change Materials for Control of Photovoltaic Cell Temperature in Buildings , 2000 .

[2]  Marcel Lacroix,et al.  Numerical simulation of a multi-layer latent heat thermal energy storage system , 1998 .

[3]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[4]  Mehmet Esen Thermal performance of a solar-aided latent heat store used for space heating by heat pump , 2000 .

[5]  M. Lacroix,et al.  ANALYSIS OF NATURAL CONVECTION MELTING OF A VERTICAL ICE CYLINDER INVOLVING DENSITY ANOMALY , 1993 .

[6]  D. Goossens,et al.  Aeolian dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance , 1999 .

[7]  E. Bilgen,et al.  Passive Solar Massive Wall Systems With Fins Attached on the Heated Wall and Without Glazing , 2000 .

[8]  Ephraim M Sparrow,et al.  Advances in Numerical Heat Transfer , 1996 .

[9]  Marcel Lacroix,et al.  Analysis of natural convection melting from a heated wall with vertically oriented fins , 1998 .

[10]  M. Lacroix Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube , 1993 .

[11]  Yildiz Bayazitoglu,et al.  Elements of Heat Transfer , 1988 .

[12]  J. Fukai,et al.  Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling , 2003 .

[13]  Friedrich Sick,et al.  Photovoltaics in Buildings: A Design Handbook for Architects and Engineers , 1996 .

[14]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[15]  D. Hale,et al.  Phase-change materials handbook , 1971 .

[16]  A. Abhat Low temperature latent heat thermal energy storage: Heat storage materials , 1983 .

[17]  K. Kaygusuz,et al.  Solar-assisted heat pump and energy storage for residential heating , 1993 .

[18]  Marcel Lacroix,et al.  NUMERICAL STUDY OF NATURAL-CONVECTION-DOMINATED MELTING INSIDE UNIFORMLY AND DISCRETELY HEATED RECTANGULAR CAVITIES , 1998 .

[19]  Kamal Abdel Radi Ismail,et al.  Thermally effective windows with moving phase change material curtains , 2001 .

[20]  Kamal Abdel Radi Ismail,et al.  Thermal performance of a pcm storage unit , 1999 .

[21]  M. Farid,et al.  An electrical storage heater using the phase-change method of heat storage , 1990 .

[22]  M. Lacroix,et al.  Melting of a PCM inside a vertical cylindrical capsule , 1995 .

[23]  J. G. Ingersoll,et al.  Simplified Calculation of Solar Cell Temperatures in Terrestrial Photovoltaic Arrays , 1986 .

[24]  M. Lacroix,et al.  NUMERICAL SIMULATION OF NATURAL CONVECTION-DOMINATED MELTING AND SOLIDIFICATION FROM A FINNED VERTICAL WALL , 1997 .

[25]  Rolf Hanitsch,et al.  Simulation of Thermal and Optical Performance of PV Modules , 1994 .

[26]  Rolf Hanitsch,et al.  Simulation Tool for Prediction and Optimization of Output Power Considering Thermal and Optical Parameters of PV Module Encapsulation , 1994 .

[27]  M. Lacroix Numerical simulation of a shell-and-tube latent heat thermal energy storage unit , 1993 .

[28]  R. Viskanta,et al.  A numerical analysis of solid-liquid phase change heat transfer around a single and two horizontal, vertically spaced cylinders in a rectangular cavity , 1997 .

[29]  R. Wirtz,et al.  Thermal management using "dry" phase change material , 1999, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.99CH36306).

[30]  Marcel Lacroix,et al.  Melting driven by natural convection A comparison exercise: first results , 1999 .

[31]  Ibrahim Dincer,et al.  Thermal Energy Storage , 2004 .