A DNA barcode library for the butterflies of North America

Although the butterflies of North America have received considerable taxonomic attention, overlooked species and instances of hybridization continue to be revealed. The present study assembles a DNA barcode reference library for this fauna to identify groups whose patterns of sequence variation suggest the need for further taxonomic study. Based on 14,626 records from 814 species, DNA barcodes were obtained for 96% of the fauna. The maximum intraspecific distance averaged 1/4 the minimum distance to the nearest neighbor, producing a barcode gap in 76% of the species. Most species (80%) were monophyletic, the others were para- or polyphyletic. Although 15% of currently recognized species shared barcodes, the incidence of such taxa was far higher in regions exposed to Pleistocene glaciations than in those that were ice-free. Nearly 10% of species displayed high intraspecific variation (>2.5%), suggesting the need for further investigation to assess potential cryptic diversity. Aside from aiding the identification of all life stages of North American butterflies, the reference library has provided new perspectives on the incidence of both cryptic and potentially over-split species, setting the stage for future studies that can further explore the evolutionary dynamics of this group.

[1]  P. Somervuo,et al.  High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity , 2021, Communications biology.

[2]  P. Hebert,et al.  A SMRT approach for targeted amplicon sequencing of museum specimens (Lepidoptera)—patterns of nucleotide misincorporation , 2021, PeerJ.

[3]  L. Duret,et al.  How consistent is RAD‐seq divergence with DNA‐barcode based clustering in insects? , 2020, Molecular ecology resources.

[4]  R. Vilà,et al.  How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. , 2020, The Journal of animal ecology.

[5]  R. Vilà,et al.  Integrative analyses on Western PalearcticLasiommatareveal a mosaic of nascent butterfly species , 2020 .

[6]  R. Vilà,et al.  Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies , 2019, Molecular ecology resources.

[7]  R. Vilà,et al.  Use of genetic, climatic, and microbiological data to inform reintroduction of a regionally extinct butterfly , 2018, Conservation biology : the journal of the Society for Conservation Biology.

[8]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[9]  P. Hebert,et al.  Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence , 2017, PloS one.

[10]  P. Grandcolas,et al.  Taxonomic bias in biodiversity data and societal preferences , 2017, Scientific Reports.

[11]  Jeremy R. deWaard,et al.  Probing planetary biodiversity with DNA barcodes: The Noctuoidea of North America , 2017, PloS one.

[12]  N. Grishin,et al.  When COI barcodes deceive: complete genomes reveal introgression in hairstreaks , 2017, Proceedings of the Royal Society B: Biological Sciences.

[13]  A. Chao,et al.  iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers) , 2016 .

[14]  R. Vilà,et al.  Historical and contemporary factors generate unique butterfly communities on islands , 2016, Scientific Reports.

[15]  R. Vos,et al.  Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera , 2016, Systematic biology.

[16]  N. Grishin,et al.  Complete genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence , 2016, Scientific Reports.

[17]  R. Vilà,et al.  DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity , 2015, Scientific Reports.

[18]  Attika Rehman,et al.  Use of DNA Barcoding to Control the Illegal Wildlife Trade: A CITES Case Report from Pakistan , 2015 .

[19]  John-James Wilson,et al.  Comparison of Butterflies, Bats and Beetles as Bioindicators Based on Four Key Criteria and DNA Barcodes , 2015 .

[20]  P. Hebert,et al.  Testing DNA Barcode Performance in 1000 Species of European Lepidoptera: Large Geographic Distances Have Small Genetic Impacts , 2014, PloS one.

[21]  Emmanuel Paradis,et al.  Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data , 2014, Methods in ecology and evolution.

[22]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[23]  Jeremy R. deWaard,et al.  A Transcontinental Challenge — A Test of DNA Barcode Performance for 1,541 Species of Canadian Noctuoidea (Lepidoptera) , 2014, PloS one.

[24]  Paul D N Hebert,et al.  DNA barcode-based delineation of putative species: efficient start for taxonomic workflows , 2014, Molecular ecology resources.

[25]  R. Vilà,et al.  Factors affecting species delimitations with the GMYC model: insights from a butterfly survey , 2013 .

[26]  M. Friberg,et al.  Reproductive isolation and patterns of genetic differentiation in a cryptic butterfly species complex , 2013, Journal of evolutionary biology.

[27]  Keping Ma,et al.  Geographical sampling bias in a large distributional database and its effects on species richness–environment models , 2013 .

[28]  Aurélien Miralles,et al.  New Metrics for Comparison of Taxonomies Reveal Striking Discrepancies among Species Delimitation Methods in Madascincus Lizards , 2013, PloS one.

[29]  Beth Mantle,et al.  A DNA ‘Barcode Blitz’: Rapid Digitization and Sequencing of a Natural History Collection , 2013, PloS one.

[30]  Sujeevan Ratnasingham,et al.  A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System , 2013, PloS one.

[31]  T. Barraclough,et al.  Delimiting Species Using Single-Locus Data and the Generalized Mixed Yule Coalescent Approach: A Revised Method and Evaluation on Simulated Data Sets , 2013, Systematic biology.

[32]  R. Cruickshank,et al.  The seven deadly sins of DNA barcoding , 2012, Molecular ecology resources.

[33]  Charlotte L. Oskam,et al.  The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils , 2012, Proceedings of the Royal Society B: Biological Sciences.

[34]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[35]  Michael Balke,et al.  The Effect of Geographical Scale of Sampling on DNA Barcoding , 2012, Systematic biology.

[36]  A. Shapiro,et al.  DRIVERS OF HYBRIDIZATION IN A 66‐GENERATION RECORD OF COLIAS BUTTERFLIES , 2012, Evolution; international journal of organic evolution.

[37]  M. Ryan,et al.  Encounter rates with conspecific males influence female mate choice in a naturally hybridizing fish , 2011 .

[38]  H. Walter Lack,et al.  Tracking origins of invasive herbivores through herbaria and archival DNA: the case of the horse‐chestnut leaf miner , 2011 .

[39]  R. Vilà,et al.  Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe , 2011, Proceedings of the Royal Society B: Biological Sciences.

[40]  R. Vilà,et al.  How common are dot-like distributions? Taxonomical oversplitting in western European Agrodiaetus (Lepidoptera: Lycaenidae) revealed by chromosomal and molecular markers. , 2010 .

[41]  Michel Baguette,et al.  A meta‐analysis of dispersal in butterflies , 2010, Biological reviews of the Cambridge Philosophical Society.

[42]  J. Fordyce,et al.  Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone , 2010, Molecular ecology.

[43]  J. Aronson,et al.  The Mediterranean Region: Biological Diversity in Space and Time , 2010 .

[44]  R. I. Hill,et al.  Mitochondrial DNA barcoding detects some species that are real, and some that are not , 2010, Molecular ecology resources.

[45]  P. Hebert,et al.  Revision of the Australian Oenochroma vinaria Guenee, 1858 species-complex (Lepidoptera: Geometridae, Oenochrominae): DNA barcoding reveals cryptic diversity and assesses status of type specimen without dissection , 2009 .

[46]  P. Hebert,et al.  DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification , 2009, Molecular ecology resources.

[47]  N. Wahlberg,et al.  Timing major conflict between mitochondrial and nuclear genes in species relationships of Polygonia butterflies (Nymphalidae: Nymphalini) , 2009, BMC Evolutionary Biology.

[48]  J. Hellmann,et al.  Introgression as a likely cause of mtDNA paraphyly in two allopatric skippers (Lepidoptera: Hesperiidae) , 2009, Heredity.

[49]  P. Taberlet,et al.  DNA barcoding for ecologists. , 2009, Trends in ecology & evolution.

[50]  W. B. Watt,et al.  A mitochondrial-DNA-based phylogeny for some evolutionary-genetic model species of Colias butterflies (Lepidoptera, Pieridae). , 2008, Molecular phylogenetics and evolution.

[51]  D. Janzen,et al.  DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservación Guanacaste, Costa Rica , 2008, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Howard A Ross,et al.  Testing the reliability of genetic methods of species identification via simulation. , 2008, Systematic biology.

[53]  P. Hebert,et al.  Comprehensive DNA barcode coverage of North American birds , 2007, Molecular ecology notes.

[54]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[55]  T. Schmitt Molecular biogeography of Europe: Pleistocene cycles and postglacial trends , 2007, Frontiers in Zoology.

[56]  P. Hebert,et al.  DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. , 2007, Trends in genetics : TIG.

[57]  M. Wiemers,et al.  Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae) , 2007, Frontiers in Zoology.

[58]  Jeremy R. deWaard,et al.  An inexpensive, automation-friendly protocol for recovering high-quality DNA , 2006 .

[59]  Alfried P Vogler,et al.  Sequence-based species delimitation for the DNA taxonomy of undescribed insects. , 2006, Systematic biology.

[60]  W. B. Watt,et al.  The green-veined white (Pieris napi L.), its Pierine relatives, and the systematics dilemmas of divergent character sets (Lepidoptera, Pieridae) , 2006 .

[61]  A. Shapiro,et al.  Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly , 2006, Molecular ecology.

[62]  D. Janzen,et al.  DNA barcodes distinguish species of tropical Lepidoptera. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Rob DeSalle,et al.  The unholy trinity: taxonomy, species delimitation and DNA barcoding , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[64]  D. Janzen,et al.  Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[65]  N. Swenson,et al.  Clustering of Contact Zones, Hybrid Zones, and Phylogeographic Breaks in North America , 2005, The American Naturalist.

[66]  D. Janzen,et al.  Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  N. Pierce,et al.  CODIVERSIFICATION IN AN ANT‐PLANT MUTUALISM: STEM TEXTURE AND THE EVOLUTION OF HOST USE IN CREMATOGASTER (FORMICIDAE: MYRMICINAE) INHABITANTS OF MACARANGA (EUPHORBIACEAE) , 2004, Evolution; international journal of organic evolution.

[68]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[69]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[70]  C. Randler Avian hybridization, mixed pairing and female choice , 2002, Animal Behaviour.

[71]  J. Searle Phylogeography — The History and Formation of Species , 2000, Heredity.

[72]  G. Hewitt The genetic legacy of the Quaternary ice ages , 2000, Nature.

[73]  P. Wirtz Mother species–father species: unidirectional hybridization in animals with female choice , 1999, Animal Behaviour.

[74]  J. Mappes,et al.  Mate choice for offspring performance: major benefits or minor costs? , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[75]  T. New Are Lepidoptera an effective ‘umbrella group‘ for biodiversity conservation? , 1997, Journal of Insect Conservation.

[76]  G. Hewitt Some genetic consequences of ice ages, and their role in divergence and speciation , 1996 .

[77]  D. Futuyma,et al.  Hybrid zones and the evolutionary process , 1995 .

[78]  F. Sperling Mitochondrial DNA variation and Haldane's rule in the Papilio glaucus and P. troilus species groups , 1993, Heredity.

[79]  W. Bailey,et al.  Experimental manipulation of mate choice by male katydids: the effect of female encounter rate , 1992, Behavioral Ecology and Sociobiology.

[80]  J. Avise A role for molecular genetics in the recognition and conservation of endangered species. , 1989, Trends in ecology & evolution.

[81]  James A. Scott,et al.  The Butterflies of North America: A Natural History and Field Guide , 1986 .

[82]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[83]  O. Taylor RANDOM VS. NON‐RANDOM MATING IN THE SULFUR BUTTERFLIES, COLIAS EURYTHEME AND COLIAS PHILODICE (LEPIDOPTERA: PIERIDAE) , 1972, Evolution; international journal of organic evolution.

[84]  J. H. Gerould Hybridization and Female Albinism in Colias Philodice and C. Eurytheme. a New Hampshire Survey in 1943 with Subsequent Data , 1946 .

[85]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[86]  J. Haldane,et al.  Sex ratio and unisexual sterility in hybrid animals , 1922, Journal of Genetics.

[87]  A. Galimberti,et al.  DNA barcoding as a new tool for food traceability , 2013 .

[88]  Paul D. N. Hebert,et al.  Assembling DNA Barcodes , 2008 .

[89]  D. Janzen,et al.  DNA barcodes of closely related (but morphologically and ecologically distinct) species of skipper butterflies (Hesperiidae) can differ by only one to three nucleotides , 2007 .

[90]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[91]  W. Hennig Phylogenetic Systematics , 2002 .

[92]  A. Solow,et al.  Conserving Biological Diversity with Scarce Resources , 1999 .

[93]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[94]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[95]  A. Chao Nonparametric estimation of the number of classes in a population , 1984 .

[96]  J. Kingman On the genealogy of large populations , 1982, Journal of Applied Probability.