Blind Signal Separation via Tensor Decomposition With Vandermonde Factor: Canonical Polyadic Decomposition

Several problems in signal processing have been formulated in terms of the Canonical Polyadic Decomposition of a higher-order tensor with one or more Vandermonde constrained factor matrices. We first propose new, relaxed uniqueness conditions. We explain that, under these conditions, the number of components may simply be estimated as the rank of a matrix. We propose an efficient algorithm for the computation of the factors that only resorts to basic linear algebra. We demonstrate the use of the results for various applications in wireless communication and array processing.

[1]  Tao Jiang,et al.  A direct blind receiver for SIMO and MIMO OFDM systems subject to unknown frequency offset and multipath , 2003, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications - SPAWC 2003 (IEEE Cat. No.03EX689).

[2]  A. V. D. Veen Algebraic methods for deterministic blind beamforming , 1998, Proc. IEEE.

[3]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[4]  Nikos D. Sidiropoulos,et al.  Identifiability results for blind beamforming in incoherent multipath with small delay spread , 2001, IEEE Trans. Signal Process..

[5]  Nikos D. Sidiropoulos,et al.  Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..

[6]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[7]  Alwin Stegeman,et al.  On Uniqueness of the nth Order Tensor Decomposition into Rank-1 Terms with Linear Independence in One Mode , 2010, SIAM J. Matrix Anal. Appl..

[8]  Sabine Van Huffel,et al.  Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..

[9]  A. Stegeman On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode , 2009 .

[10]  Jun Li,et al.  Multitarget Identification and Localization Using Bistatic MIMO Radar Systems , 2008, EURASIP J. Adv. Signal Process..

[11]  P. P. Vaidyanathan,et al.  MIMO Radar Space–Time Adaptive Processing Using Prolate Spheroidal Wave Functions , 2008, IEEE Transactions on Signal Processing.

[12]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[13]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[14]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[15]  Lieven De Lathauwer,et al.  A short introduction to tensor-based methods for Factor Analysis and Blind Source Separation , 2011, 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA).

[16]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  Nikos D. Sidiropoulos,et al.  Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.

[18]  Jun Liu,et al.  An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.

[19]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[20]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.

[21]  J. Compton The tripole antenna: An adaptive array with full polarization flexibility , 1981 .

[22]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[23]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[24]  Jian Li,et al.  On Parameter Identifiability of MIMO Radar , 2007, IEEE Signal Processing Letters.

[25]  A. Samoson,et al.  Suppression of DOR Sidebands , 1994 .

[26]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[27]  Daniel Benevides da Costa,et al.  Unified Tensor Modeling for Blind Receivers in Multiuser Uplink Cooperative Systems , 2012, IEEE Signal Process. Lett..

[28]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..

[29]  K V S Hari,et al.  Novel subspace methods for blind estimation of multiple CFOs in MIMO-OFDM systems , 2010, IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS.

[30]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[31]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[32]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[33]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[34]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[35]  L. De Lathauwer,et al.  Exponential data fitting using multilinear algebra: the decimative case , 2009 .

[36]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[37]  Lieven De Lathauwer,et al.  Tensor decompositions with Vandermonde factor and applications in signal processing , 2012, 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[38]  Shihua Zhu,et al.  A CANDECOMP/PARAFAC Perspective on Uniqueness of DOA Estimation Using a Vector Sensor Array , 2011, IEEE Transactions on Signal Processing.

[39]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[40]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[41]  Pierre Comon,et al.  Canonical Polyadic Decomposition with a Columnwise Orthonormal Factor Matrix , 2012, SIAM J. Matrix Anal. Appl..

[42]  S. Vanhuffel,et al.  Algorithm for time-domain NMR data fitting based on total least squares , 1994 .

[43]  Xiaofei Zhang,et al.  Blind PARAFAC Signal Detection for Polarization Sensitive Array , 2007, EURASIP J. Adv. Signal Process..

[44]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[45]  Zhao Jicha DOA estimation using dimension reduction quaternion estimation of signal parameters via rotational invariance techniques , 2015 .

[46]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.