Instrumental variable estimation based on grouped data

The paper considers the estimation of the coefficients of a single equation in the presence of dummy intruments. We derive pseudo ML and GMM estimators based on moment restrictions induced either by the structural form or by the reduced form of the model. The performance of the estimators is evaluated for the non-Gaussian case. We allow for heteroscedasticity. The asymptotic distributions are based on parameter sequences where the number of instruments increases at the same rate as the sample size. Relaxing the usual Gaussian assumption is shown to affect the normal asymptotic distributions. As a result also recently suggested new specification tests for the validity of instruments depend on Gaussianity. Monte Carlo simulations confirm the accuracy of the asymptotic approach.

[1]  Adrian Pagan,et al.  Some consequences of viewing LIML as an iterated Aitken estimator , 1979 .

[2]  Stephen G. Donald,et al.  Choosing the Number of Instruments , 2001 .

[3]  N. Kunitomo Asymptotic Expansions of the Distributions of Estimators in a Linear Functional Relationship and Simultaneous Equations , 1980 .

[4]  Jinook Jeong,et al.  ON THE EXACT SMALL SAMPLE DISTRIBUTION OF THE INSTRUMENTAL VARIABLE ESTIMATOR , 1992 .

[5]  Peter C. B. Phillips,et al.  Exact Small Sample Theory in the Simultaneous Equations Model , 1983 .

[6]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[7]  John Shea,et al.  Instrument Relevance in Multivariate Linear Models: A Simple Measure , 1996, Review of Economics and Statistics.

[8]  T. W. Anderson,et al.  Estimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations , 1949 .

[9]  Eric Zivot,et al.  Improved Inference for the Instrumental Variable Estimator , 1999 .

[10]  S. Addelman,et al.  Fitting straight lines when both variables are subject to error. , 1978, Life sciences.

[11]  Eric Zivot,et al.  Inference on a Structural Parameter in Instrumental Variables Regression with Weak Instruments , 1996 .

[12]  I. Olkin,et al.  A Minimum-Distance Interpretation of Limited-Information Estimation , 1971 .

[13]  Jinyong Hahn,et al.  A New Specification Test for the Validity of Instrumental Variables , 2000 .

[14]  A. Buse,et al.  The Bias of Instrumental Variable Estimators , 1992 .

[15]  T. W. Anderson Estimation of Linear Functional Relationships: Approximate Distributions and Connections with Simultaneous Equations in Econometrics , 1976 .

[16]  K. Morimune Approximate Distributions of k-Class Estimators when the Degree of Overidentifiability is Large Compared with the Sample Size , 1983 .

[17]  P. Moran Estimating structural and functional relationships , 1971 .

[18]  Eric Zivot,et al.  Valid Confidence Intervals and Inference in the Presence of Weak Instruments , 1998 .

[19]  Richard Startz,et al.  Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator , 1988 .

[20]  J. Angrist,et al.  The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples , 1990 .

[21]  T. W. Anderson Estimating Linear Statistical Relationships , 1984 .

[22]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[23]  J. Angrist,et al.  Does Compulsory School Attendance Affect Schooling and Earnings? , 1990 .

[24]  N. Kunitomo A third order optimum property of the ML estimator in a linear functional relationship model and simultaneous equation system in econometrics , 1987 .

[25]  Arthur Lewbel Demand Estimation with Expenditure Measurement Errors on the Left and Right Hand Side , 1996 .

[26]  Steven D. Levitt,et al.  Using Electoral Cycles in Police Hiring to Estimate the Effect of Policeon Crime , 1995 .

[27]  Eric Zivot,et al.  Inference on Structural Parameters In Instrumental Variables Regression With Weak Instruments , 1998 .

[28]  Jinyong Hahn,et al.  A MONTE CARLO COMPARISON OF VARIOUS ASYMPTOTIC APPROXIMATIONS TO THE DISTRIBUTION OF INSTRUMENTAL VARIABLES ESTIMATORS , 2002 .

[29]  Richard Startz,et al.  The Distribution of the Instrumental Variables Estimator and its T-Ratiowhen the Instrument is a Poor One , 1988 .

[30]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[31]  Joshua D. Angrist,et al.  Grouped Data Estimation and Testing in Simple Labor Supply Models , 1991 .

[32]  Joshua D. Angrist,et al.  Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records , 1990 .

[33]  Paul A. Bekker,et al.  ALTERNATIVE APPROXIMATIONS TO THE DISTRIBUTIONS OF INSTRUMENTAL VARIABLE ESTIMATORS , 1994 .

[34]  N. Kunitomo COMPARING SOME MODIFIED MAXIMUM LIKELIHOOD ESTIMATORS OF A SLOPE COEFFICIENT IN A LINEAR FUNCTIONAL RELATIONSHIP , 1986 .

[35]  David A. Jaeger,et al.  Problems with Instrumental Variables Estimation when the Correlation between the Instruments and the Endogenous Explanatory Variable is Weak , 1995 .

[36]  Roberto S. Mariano,et al.  Analytical Small-Sample Distribution Theory in Econometrics: The Simultaneous Equations Case , 1982 .

[37]  Glenn D. Rudebusch,et al.  Judging Instrument Relevance in Instrumental Variables Estimation , 1996 .

[38]  Cheng Hsiao,et al.  Latent variable models in econometrics , 1984 .

[39]  R. Koenker,et al.  GMM inference when the number of moment conditions is large , 1999 .

[40]  Naoto Kunitomo,et al.  Evaluation of the Distribution Function of the Limited Information Maximum Likelihood Estimator , 1982 .

[41]  T. Koopmans Statistical inference in dynamic economic models , 1951 .

[42]  Marno Verbeek,et al.  Minimum MSE estimation of a regression model with fixed effects from a series of cross sections (Revised version) , 1993 .

[43]  David Card Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems , 2000 .

[44]  C. Nelson,et al.  The Distribution of the Instrumental Variables Estimator and its T-Ratiowhen the Instrument is a Poor One , 1988 .

[45]  H. James VARIETIES OF SELECTION BIAS , 1990 .

[46]  Angus Deaton Panel data from time series of cross-sections , 1985 .

[47]  Steven D. Levitt,et al.  Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on Crime: Comment , 2002 .

[48]  Joshua D. Angrist,et al.  Split-Sample Instrumental Variables Estimates of the Return to Schooling , 1995 .