Characteristic roots for two-lag linear delay differential equations

We consider the class of two-lag linear delay differential equations and develop a series expansion to solve for the roots of the nonlinear characteristic equation. The expansion draws on results from complex analysis, combinatorics, special functions, and classical analysis for differential equations. Supporting numerical results are presented along with application of our method to study the stability of a two-lag model from ecology.

[1]  Rumen L. Mishkov,et al.  Generalization of the formula of Faa di Bruno for a composite function with a vector argument , 2000 .

[2]  Ferrell S. Wheeler Bell polynomials , 1987, SIGS.

[3]  Wim Michiels,et al.  Topics in Time Delay Systems , 2009 .

[4]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[5]  Yuan Yuan,et al.  Stability and Hopf Bifurcation Analysis for Functional Differential Equation with Distributed Delay , 2011, SIAM J. Appl. Dyn. Syst..

[6]  Silviu-Iulian Niculescu,et al.  Survey on Recent Results in the Stability and Control of Time-Delay Systems* , 2003 .

[7]  S. Ruan,et al.  On the zeros of transcendental functions with applications to stability of delay differential equations with two delays , 2003 .

[8]  Jack K. Hale,et al.  On the zeros of exponential polynomials , 1980 .

[9]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[10]  Naci Zafer,et al.  Discussion: “Analysis of a System of Linear Delay Differential Equations” (Asl, F. M., and Ulsoy, A. G., 2003, ASME J. Dyn. Syst., Meas., Control, 125, pp. 215–223) , 2007 .

[11]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[12]  D. Bortz,et al.  Determination of personalized diabetes treatment plans using a two-delay model. , 2014, Journal of theoretical biology.

[13]  A. Galip Ulsoy,et al.  Closure to "Discussion of 'Analysis of a System of Linear Delay Differential Equations' " (2007, ASME J. Dyn. Syst., Meas., Control, 129, pp. 121-122) , 2007 .

[14]  S. Ruan,et al.  Stability and bifurcation in a neural network model with two delays , 1999 .

[15]  Firas A. Khasawneh,et al.  A spectral element approach for the stability analysis of time-periodic delay equations with multiple delays , 2013, Commun. Nonlinear Sci. Numer. Simul..

[16]  Yuan Yuan,et al.  Synchronized Hopf bifurcation analysis in a neural network model with delays , 2005 .

[17]  S. Ruan DELAY DIFFERENTIAL EQUATIONS IN SINGLE SPECIES DYNAMICS , 2006 .

[18]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[19]  Joseph M. Mahaffy,et al.  Regions of stability for a linear differential equation with two rationally dependent delays , 2013, 1308.1427.

[20]  Sun Yi,et al.  Time-Delay Systems: Analysis and Control Using the Lambert W Function , 2010 .

[21]  Jacques Bélair,et al.  Bifurcations, stability, and monotonicity properties of a delayed neural network model , 1997 .

[22]  On the zeros of exponential polynomials , 1929 .

[23]  Ángel Martín del Rey,et al.  Faa' di Bruno's formula, lattices, and partitions , 2005, Discret. Appl. Math..

[24]  P. van den Driessche,et al.  On a two lag differential delay equation , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[25]  F. G. Boese Stability criteria for second-order dynamical systems involving several time delays , 1995 .

[26]  Patrick W. Nelson,et al.  Applications of Sturm sequences to bifurcation analysis of delay differential equation models , 2004 .

[27]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[28]  Xiangao Li,et al.  Stability and Bifurcation in Delay–Differential Equations with Two Delays , 1999 .

[29]  J. Loiseau Topics in time delay systems : analysis, algorithms and control , 2009 .

[30]  A. Galip Ulsoy,et al.  Analysis of a System of Linear Delay Differential Equations , 2003 .

[31]  J. Hale,et al.  Global geometry of the stable regions for two delay differential equations , 1993 .

[32]  Elias Jarlebring,et al.  Critical delays and polynomial eigenvalue problems , 2007, 0706.1634.

[33]  Tobias Damm,et al.  The Lambert W function and the spectrum of some multidimensional time-delay systems , 2007, Autom..

[34]  Robert M. Corless,et al.  A sequence of series for the Lambert W function , 1997, ISSAC.

[35]  Pierdomenico Pepe,et al.  Time Delay Systems: Methods, Applications and New Trends , 2012 .

[36]  Donald E. Knuth Two notes on notation , 1992 .

[37]  DONALD MICHIE,et al.  “Memo” Functions and Machine Learning , 1968, Nature.

[38]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[39]  Nejat Olgac,et al.  Stability intricacies of two-delay linear systems in the presence of delay cross-talk , 2011 .

[40]  Malay Banerjee,et al.  A Primary Infection Model for HIV and Immune response with Two Discrete Time Delays , 2010 .

[41]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[42]  D. Bortz,et al.  Eigenvalues for a Two-Lag Linear Delay Differential Equation∗ , 2012, 1206.6364.

[43]  Balakumar Balachandran,et al.  Systems with Periodic Coefficients and Periodically Varying Delays: Semidiscretization-Based Stability Analysis , 2009 .

[44]  G. Samaey,et al.  Determining stability of pulses for partial differential equations with time delays , 2005 .

[45]  R. Bellman,et al.  Differential-Difference Equations , 1967 .

[46]  Ruben Aldrovandi,et al.  Special Matrices of Mathematical Physics: Stochastic, Circulant and Bell Matrices , 2001 .

[47]  Joseph M. Mahaffy,et al.  A GEOMETRIC ANALYSIS OF STABILITY REGIONS FOR A LINEAR DIFFERENTIAL EQUATION WITH TWO DELAYS , 1995 .

[48]  K. L. Cooke,et al.  Analysis of an SEIRS epidemic model with two delays , 1996, Journal of mathematical biology.

[49]  Carlos J. Moreno,et al.  The zeros of exponential polynomials (I) , 1973 .

[50]  Yang Kuang,et al.  Analysis of a Model of the Glucose-Insulin Regulatory System with Two Delays , 2007, SIAM J. Appl. Math..

[51]  Yoshitaka Sasaki,et al.  On zeros of exponential polynomials and quantum algorithms , 2009, Quantum Inf. Process..

[52]  D M Bortz,et al.  Incorporation of variability into the modeling of viral delays in HIV infection dynamics. , 2003, Mathematical biosciences.

[53]  Tamás Kalmár-Nagy,et al.  Delay differential equations : recent advances and new directions , 2009 .