Dini derivatives in optimization — Part I
暂无分享,去创建一个
[1] G. Giorgi. A note on quasiconvex functions that are pseudoconvex , 1987 .
[2] G. Giorgi. Quasi-convex programming revisited , 1984 .
[3] A. Ben-Tal,et al. Directional derivatives in nonsmooth optimization , 1985 .
[4] W. Ziemba,et al. Generalized concavity in optimization and economics , 1981 .
[5] On a possible generalization of pshemchhy's quasidifferentiability , 1990 .
[6] J. P. Crouzeix,et al. About differentiability of order one of quasiconvex functions onRn , 1982 .
[7] R. Rockafellar. The theory of subgradients and its applications to problems of optimization : convex and nonconvex functions , 1981 .
[8] Mean Value Theorems for Functions with Finite Derivates , 1960 .
[9] M. Nashed,et al. On the cones of tangents with applications to mathematical programming , 1974 .
[10] Abdelhak Hassouni. Quasimonotone Multifunctions; Applications to Optimality Conditions in Quasiconvex Programming , 1992 .
[11] S. Karamardian,et al. Seven kinds of monotone maps , 1990 .
[12] O. Mangasarian. PSEUDO-CONVEX FUNCTIONS , 1965 .
[13] Ludwig Scheeffer,et al. Zur Theorie der Stetigen Funktionen einer Reellen Veränderlichen , 1884 .
[14] I. Ekeland,et al. Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces , 1976 .
[15] Mean value properties of nondifferentiation functions and their application in nonsmooth analysis , 1989 .
[16] Jean-Pierre Crouzeix. Some differentiability properties of quasiconvex functions ℝn , 1981 .
[17] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[18] A. Ioffe. Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps , 1984 .
[19] B. M. Glover,et al. Generalized convexity in nondifferentiable programming , 1984, Bulletin of the Australian Mathematical Society.
[20] D. Zagbodny,et al. A note on the equivalence between the mean value theorem for the dim derivative and the Clarke-Rockafellar derivative , 1990 .
[21] K. Elster,et al. Abstract cone approximations and generalized differentiability in nonsmooth optimization , 1988 .
[22] J. P. Crouzeix,et al. Continuity properties of the normal cone to the level sets of a quasiconvex function , 1990 .
[23] A. Denjoy. Mémoire sur les nombres dérivés des fonctions continues , 1915 .
[24] S. Swaminathan. A characterization of convex functions , 1993 .
[25] Siegfried Schaible,et al. On strong pseudomonotonicity and (semi)strict quasimonotonicity , 1993 .
[26] S. Karamardian. Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .
[27] J. Penot,et al. On the mean value theorem , 1988 .
[28] A. Cambini,et al. Generalized convexity and fractional programming with economic applications : proceedings of the International Workshop on "Generalized Concavity, Fractional Programming, and Economic Applications" held at the University of Pisa, Italy, May 30-June 1, 1988 , 1990 .
[29] S. Karamardian,et al. Strictly quasi-convex (concave) functions and duality in mathematical programming , 1967 .
[30] Sfindor KOMLOSI. Some properties of nondifferentiable pseudoconvex functions , 1983, Math. Program..
[31] J. Penot. Calcul sous-differentiel et optimisation , 1978 .
[32] S. Komlósi. Quasiconvex first-order approximations and Kuhn-Tucker type optimality conditions , 1993 .
[33] R. Temam. A characterization of quasi-convex functions , 1982 .
[34] K. Arrow,et al. QUASI-CONCAVE PROGRAMMING , 1961 .
[35] V. F. Dem'yanov,et al. Nondifferentiable Optimization , 1985 .
[36] Jacques A. Ferland,et al. Criteria for quasi-convexity and pseudo-convexity: Relationships and comparisons , 1982, Math. Program..