Dini derivatives in optimization — Part I

This paper, published in two parts, is mainly concerned with general properties of Dini derivatives of functions of one and several variables and with some applications of this topic to the study of generalized convexity and generalized optimality conditions for mathematical programming problems.In part I the basic definitions and properties are given, with reference both to functions of one real variable and to functions of several real variables. In this part special attention is given to the restatement of the basic theorems of the classical analysis to nondifferentiable functions, in terms of Dini derivatives.In part II we use these derivatives in order to define some classes of nondifferentiable generalized convex functions and the class of generalized upper quasidifferentiable functions. This part concludes with the development of optimality conditions for a nonsmooth programming problem, expressed in terms of the tools prevously introduced.RiassuntoIl presente lavoro, pubblicato in due parti, riguarda le principali proprietà dei numeri derivati di Dini (o derivate direzioni di Dini), sia di funzioni di una variablile che di più variabili, nonché alcune loro applicazioni allo studio della convessità generalizzata ed a problemi di ottimizzazione vincolata.Nella prima parte del lavoro si forniscono le definizioni e le proprietà fondamentali dei numeri derivati di Dini e vengono riformulati alcuni classici teoremi dell'an alisi, con riferimento a funzioni non differenziabili.Nella seconda parte tali derivate direzionali vengono applicate nello studio di alcune classi di funzioni convesse generalizzate non differenziabili e nell'ottenimento di condizioni di ottimalità per problemi (non differenziabili) di programmazione matematica.

[1]  G. Giorgi A note on quasiconvex functions that are pseudoconvex , 1987 .

[2]  G. Giorgi Quasi-convex programming revisited , 1984 .

[3]  A. Ben-Tal,et al.  Directional derivatives in nonsmooth optimization , 1985 .

[4]  W. Ziemba,et al.  Generalized concavity in optimization and economics , 1981 .

[5]  On a possible generalization of pshemchhy's quasidifferentiability , 1990 .

[6]  J. P. Crouzeix,et al.  About differentiability of order one of quasiconvex functions onRn , 1982 .

[7]  R. Rockafellar The theory of subgradients and its applications to problems of optimization : convex and nonconvex functions , 1981 .

[8]  Mean Value Theorems for Functions with Finite Derivates , 1960 .

[9]  M. Nashed,et al.  On the cones of tangents with applications to mathematical programming , 1974 .

[10]  Abdelhak Hassouni Quasimonotone Multifunctions; Applications to Optimality Conditions in Quasiconvex Programming , 1992 .

[11]  S. Karamardian,et al.  Seven kinds of monotone maps , 1990 .

[12]  O. Mangasarian PSEUDO-CONVEX FUNCTIONS , 1965 .

[13]  Ludwig Scheeffer,et al.  Zur Theorie der Stetigen Funktionen einer Reellen Veränderlichen , 1884 .

[14]  I. Ekeland,et al.  Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces , 1976 .

[15]  Mean value properties of nondifferentiation functions and their application in nonsmooth analysis , 1989 .

[16]  Jean-Pierre Crouzeix Some differentiability properties of quasiconvex functions ℝn , 1981 .

[17]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[18]  A. Ioffe Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps , 1984 .

[19]  B. M. Glover,et al.  Generalized convexity in nondifferentiable programming , 1984, Bulletin of the Australian Mathematical Society.

[20]  D. Zagbodny,et al.  A note on the equivalence between the mean value theorem for the dim derivative and the Clarke-Rockafellar derivative , 1990 .

[21]  K. Elster,et al.  Abstract cone approximations and generalized differentiability in nonsmooth optimization , 1988 .

[22]  J. P. Crouzeix,et al.  Continuity properties of the normal cone to the level sets of a quasiconvex function , 1990 .

[23]  A. Denjoy Mémoire sur les nombres dérivés des fonctions continues , 1915 .

[24]  S. Swaminathan A characterization of convex functions , 1993 .

[25]  Siegfried Schaible,et al.  On strong pseudomonotonicity and (semi)strict quasimonotonicity , 1993 .

[26]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[27]  J. Penot,et al.  On the mean value theorem , 1988 .

[28]  A. Cambini,et al.  Generalized convexity and fractional programming with economic applications : proceedings of the International Workshop on "Generalized Concavity, Fractional Programming, and Economic Applications" held at the University of Pisa, Italy, May 30-June 1, 1988 , 1990 .

[29]  S. Karamardian,et al.  Strictly quasi-convex (concave) functions and duality in mathematical programming , 1967 .

[30]  Sfindor KOMLOSI Some properties of nondifferentiable pseudoconvex functions , 1983, Math. Program..

[31]  J. Penot Calcul sous-differentiel et optimisation , 1978 .

[32]  S. Komlósi Quasiconvex first-order approximations and Kuhn-Tucker type optimality conditions , 1993 .

[33]  R. Temam A characterization of quasi-convex functions , 1982 .

[34]  K. Arrow,et al.  QUASI-CONCAVE PROGRAMMING , 1961 .

[35]  V. F. Dem'yanov,et al.  Nondifferentiable Optimization , 1985 .

[36]  Jacques A. Ferland,et al.  Criteria for quasi-convexity and pseudo-convexity: Relationships and comparisons , 1982, Math. Program..