A Range Ambiguity Resolution Approach for High-Resolution and Wide-Swath SAR Imaging Using Frequency Diverse Array

In spaceborne synthetic aperture radar (SAR), it is a challenging problem to realize high resolution and wide swath imaging (HRWS) due to the conflict between Doppler and range ambiguities. To mitigate this conflict, a range ambiguity resolution approach for HRWS SAR imaging using frequency diverse array (FDA) is proposed in this paper. The FDA employs a set of slightly different carrier frequencies, each of which is emitted by an individual array element. Frequency diversity introduces wave-path difference among the array elements, thus resulting in the range-angle-dependent property of transmit steering vector. Utilizing the extra degrees-of-freedom in range domain, FDA is capable of distinguishing the range ambiguous echoes in the spatial frequency domain. In our approach, the range ambiguous echoes are compensated by range dependence compensation (RDC) technique in the transmit spatial frequency domain. In the sequel, the range ambiguous echoes are separated by using a series of transmit beamformers as the echoes from different range regions are discriminable. Finally, traditional imaging processing is performed on the reconstructed unambiguous data to achieve HRWS imaging. Simulation results have verified the effectiveness of the proposed approach.

[1]  Mengdao Xing,et al.  Multichannel HRWS SAR Imaging Based on Range-Variant Channel Calibration and Multi-Doppler-Direction Restriction Ambiguity Suppression , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Gerhard Krieger,et al.  Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[3]  M.A. Temple,et al.  Application of Frequency Diverse Arrays to Synthetic Aperture Radar Imaging , 2007, 2007 International Conference on Electromagnetics in Advanced Applications.

[4]  Jens Klare Digital Beamforming for a 3D MIMO SAR - Improvements through Frequency and Waveform Diversity , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[5]  A. Hizal,et al.  Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays , 2013, IEEE Transactions on Antennas and Propagation.

[6]  C.J. Baker,et al.  Multi-mission multi-mode waveform diversity , 2006, 2006 IEEE Conference on Radar.

[7]  Gerhard Krieger,et al.  MIMO-SAR: Opportunities and Pitfalls , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Wen-Qin Wang,et al.  Range-Angle Dependent Transmit Beampattern Synthesis for Linear Frequency Diverse Arrays , 2013, IEEE Transactions on Antennas and Propagation.

[9]  Zheng Bao,et al.  Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems , 2005, IEEE Geosci. Remote. Sens. Lett..

[10]  Werner Wiesbeck,et al.  Investigation of a New Multifunctional High Performance SAR System Concept Exploiting MIMO Technology , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[11]  M. Suess,et al.  A novel high resolution, wide swath SAR system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[12]  Gerhard Krieger,et al.  Staggered SAR: High-Resolution Wide-Swath Imaging by Continuous PRI Variation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[13]  H. D. Griffiths,et al.  Range-angle dependent waveform , 2010, 2010 IEEE Radar Conference.

[14]  M.A. Temple,et al.  Exploiting frequency diverse array processing to improve SAR image resolution , 2008, 2008 IEEE Radar Conference.

[15]  Wen-Qin Wang,et al.  Phased-MIMO Radar With Frequency Diversity for Range-Dependent Beamforming , 2013, IEEE Sensors Journal.

[16]  Guisheng Liao,et al.  Space-Time-Range Adaptive Processing for Airborne Radar Systems , 2015, IEEE Sensors Journal.

[17]  Kun Li,et al.  Implementation of the OFDM Chirp Waveform on MIMO SAR Systems , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Wen-Qin Wang,et al.  Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar , 2014, IEEE Transactions on Signal Processing.

[19]  Guisheng Liao,et al.  Range Ambiguous Clutter Suppression for Airborne FDA-STAP Radar , 2015, IEEE Journal of Selected Topics in Signal Processing.

[20]  Leopold J. Cantafio,et al.  Space-Based Radar Handbook , 1989 .

[21]  Gerhard Krieger,et al.  Advanced Concepts for High-Resolution Wide-Swath SAR Imaging , 2010 .

[22]  Jingjing Huang,et al.  Frequency diverse array with beam scanning feature , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[23]  Wen-Qin Wang,et al.  A Flexible Phased-MIMO Array Antenna with Transmit Beamforming , 2012 .

[24]  Gerhard Krieger,et al.  Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling , 2004, IEEE Geoscience and Remote Sensing Letters.

[25]  Hugh D. Griffiths,et al.  Frequency Diverse MIMO Techniques for Radar , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[26]  Murat Akçakaya,et al.  MIMO Radar Sensitivity Analysis for Target Detection , 2011, IEEE Transactions on Signal Processing.

[27]  Kun Li,et al.  A Novel Space–Time Coding Scheme Used for MIMO-SAR Systems , 2015, IEEE Geoscience and Remote Sensing Letters.

[28]  Jawad Farooq,et al.  Frequency Diversity for Improving Synthetic Aperture Radar Imaging , 2009 .

[29]  Mengdao Xing,et al.  A Robust Imaging Algorithm for Squint Mode Multi-Channel High-Resolution and Wide-Swath SAR With Hybrid Baseline and Fluctuant Terrain , 2015, IEEE Journal of Selected Topics in Signal Processing.

[30]  Lei Huang,et al.  Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array , 2015, IEEE Transactions on Signal Processing.

[31]  Jingjing Huang,et al.  Frequency diverse array: Simulation and design , 2009, 2009 Loughborough Antennas & Propagation Conference.

[32]  M. Wicks,et al.  Range-dependent beamforming using element level waveform diversity , 2006, 2006 International Waveform Diversity & Design Conference.

[33]  M. Seçmen,et al.  Frequency Diverse Array Antenna with Periodic Time Modulated Pattern in Range and Angle , 2007, 2007 IEEE Radar Conference.

[34]  C.J. Baker,et al.  Developments in the Frequency Diverse Bistatic System , 2009, 2009 IEEE Radar Conference.

[35]  C.J. Baker,et al.  Frequency diverse array radars , 2006, 2006 IEEE Conference on Radar.

[36]  C.J. Baker,et al.  The Frequency Diverse Bistatic System , 2009, 2009 International Waveform Diversity and Design Conference.

[37]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[38]  Wen-Qin Wang,et al.  MIMO SAR using Chirp Diverse Waveform for Wide-Swath Remote Sensing , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Wen-Qin Wang Space–Time Coding MIMO-OFDM SAR for High-Resolution Imaging , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[40]  I. Longstaff,et al.  Wide-swath space-borne SAR using a quad-element array , 1999 .

[41]  Werner Wiesbeck,et al.  SAR with digital beamforming on receive only , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).