Localized policy-based target tracking using wireless sensor networks

Wireless Sensor Networks (WSN)-based surveillance applications necessitate tracking a target's trajectory with a high degree of precision. Further, target tracking schemes should consider energy consumption in these resource-constrained networks. In this work, we propose an energy-efficient target tracking algorithm, which minimizes the number of nodes in the network that should be activated for tracking the movement of the target. We model the movement of a target based on the Gauss Markov Mobility Model [Camp et al. 2002]. On detecting a target, the cluster head which detects it activates an optimal number of nodes within its cluster, so that these nodes start sensing the target. A Markov Decision Process (MDP)-based framework is designed to adaptively determine the optimal policy for selecting the nodes localized with each cluster. As the distance between the node and the target decreases, the Received Signal Strength (RSS) increases, thereby increasing the precision of the readings of sensing the target at each node. Simulations show that our proposed algorithm is energy-efficient. Also, the accuracy of the tracked trajectory varies between 50% to 1% over time.

[1]  B. John Oommen,et al.  An efficient pursuit automata approach for estimating stable all-pairs shortest paths in stochastic network environments , 2009, Int. J. Commun. Syst..

[2]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[3]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[4]  Mohammad S. Obaidat,et al.  An ant colony optimization approach for reputation and quality-of-service-based security in wireless sensor networks , 2009, Secur. Commun. Networks.

[5]  Richard R. Brooks,et al.  Self-Organized Distributed Sensor Network Entity Tracking , 2002, Int. J. High Perform. Comput. Appl..

[6]  Chen-Khong Tham,et al.  Energy Efficient Multiple Target Tracking in Wireless Sensor Networks , 2007, IEEE Transactions on Vehicular Technology.

[7]  P. Venkata Krishna,et al.  An Adaptive Learning Scheme for Medium Access with Channel Reservation in Wireless Networks , 2011, Wirel. Pers. Commun..

[8]  Guohong Cao,et al.  Optimizing tree reconfiguration for mobile target tracking in sensor networks , 2004, IEEE INFOCOM 2004.

[9]  Feng Zhao,et al.  Information-Driven Dynamic Sensor Collaboration for Tracking Applications , 2002 .

[10]  Richard R. Brooks,et al.  Traffic Model Evaluation of Ad Hoc Target Tracking Algorithms , 2002, Int. J. High Perform. Comput. Appl..

[11]  Jeong Geun Kim,et al.  Opportunistic Transmission for Wireless Sensor Networks Under Delay Constraints , 2007, ICCSA.

[12]  B. John Oommen,et al.  Dynamic algorithms for the shortest path routing problem: learning automata-based solutions , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Anand V. Panangadan,et al.  Markov Decision Processes for Control of a Sensor Network-based Health Monitoring System , 2005, AAAI.

[14]  Stéphane Lafortune,et al.  On an Optimization Problem in Sensor Selection* , 2002, Discret. Event Dyn. Syst..

[15]  Winston Khoon Guan Seah,et al.  A Combinatorics-Based Wakeup Scheme for Target Tracking in Wireless Sensor Networks , 2007, 2007 IEEE Wireless Communications and Networking Conference.

[16]  D. Salmond,et al.  Target tracking: introduction and Kalman tracking filters , 2001 .

[17]  Vivek Tiwari,et al.  Lacas: learning automata-based congestion avoidance scheme for healthcare wireless sensor networks , 2009, IEEE Journal on Selected Areas in Communications.

[18]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[19]  Chen-Khong Tham,et al.  A novel target movement model and energy efficient target tracking in sensor networks , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[20]  B. John Oommen,et al.  An efficient dynamic algorithm for maintaining all-pairs shortest paths in stochastic networks , 2006, IEEE Transactions on Computers.

[21]  B. John Oommen,et al.  Random Early Detection for Congestion Avoidance in Wired Networks: A Discretized Pursuit Learning-Automata-Like Solution , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Feng Zhao,et al.  Distributed state representation for tracking problems in sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[23]  Hao Zhu,et al.  Self-organization of unattended wireless acoustic sensor networks for ground target tracking , 2009, Pervasive Mob. Comput..

[24]  Lui Sha,et al.  Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks , 2004, IEEE Trans. Mob. Comput..

[25]  B. John Oommen,et al.  GPSPA: a new adaptive algorithm for maintaining shortest path routing trees in stochastic networks , 2004, Int. J. Commun. Syst..

[26]  Jaehoon Jeong,et al.  MCTA: Target Tracking Algorithm Based on Minimal Contour in Wireless Sensor Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[27]  R. Cristescu,et al.  Power Control for Target Tracking in Sensor Networks , 2005 .

[28]  Chen-Khong Tham,et al.  Energy efficient multiple target tracking in sensor networks , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[29]  Xue Wang,et al.  Distributed Energy Optimization for Target Tracking in Wireless Sensor Networks , 2010, IEEE Transactions on Mobile Computing.

[30]  Jie Liu,et al.  Distributed state representation for tracking problems in sensor networks , 2004, IPSN '04.

[31]  Wang-Chien Lee,et al.  Prediction-based strategies for energy saving in object tracking sensor networks , 2004, IEEE International Conference on Mobile Data Management, 2004. Proceedings. 2004.

[32]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[33]  S. Marcus,et al.  Multi-time Scale Markov Decision Processes , 2005 .

[34]  Wei Tsang Ooi,et al.  Mobile Target Tracking Using Sensor Networks , 2005 .

[35]  Feng Zhao,et al.  Distributed Group Management for Track Initiation and Maintenance in Target Localization Applications , 2003, IPSN.

[36]  Lui Sha,et al.  Dynamic clustering for acoustic target tracking in wireless sensor networks , 2003, IEEE Transactions on Mobile Computing.

[37]  Mark A. Shayman,et al.  Multitime scale Markov decision processes , 2003, IEEE Trans. Autom. Control..

[38]  Akbar M. Sayeed,et al.  Detection, Classification and Tracking of Targets in Distributed Sensor Networks , 2002 .

[39]  P. Venkata Krishna,et al.  LAID: a learning automata-based scheme for intrusion detection in wireless sensor networks , 2009, Secur. Commun. Networks.

[40]  Yanghee Choi,et al.  Distributed and energy-efficient target localization and tracking in wireless sensor networks , 2006, Comput. Commun..

[41]  Feng Zhao,et al.  Information-driven dynamic sensor collaboration , 2002, IEEE Signal Process. Mag..

[42]  Zack J. Butler,et al.  Tracking a moving object with a binary sensor network , 2003, SenSys '03.

[43]  Tracy Camp,et al.  A survey of mobility models for ad hoc network research , 2002, Wirel. Commun. Mob. Comput..

[44]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[45]  Parameswaran Ramanathan,et al.  Distributed target classification and tracking in sensor networks , 2003 .

[46]  Sudip Misra,et al.  Using ant-based agents for congestion control in ad-hoc wireless sensor networks , 2009, Cluster Computing.

[47]  Yu Hen Hu,et al.  Detection, classification, and tracking of targets , 2002, IEEE Signal Process. Mag..

[48]  S. Shankar Sastry,et al.  A Hierarchical Multiple-Target Tracking Algorithm for Sensor Networks , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[49]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[50]  Bhaskar Krishnamachari,et al.  Energy-Quality Tradeoffs for Target Tracking in Wireless Sensor Networks , 2003, IPSN.