About (k, l)-Kernels, Semikernels and Grundy Functions in Partial Line Digraphs

Abstract Let D be a digraph of minimum in-degree at least 1. We prove that for any two natural numbers k, l such that 1 ≤ l ≤ k, the number of (k, l)-kernels of D is less than or equal to the number of (k, l)-kernels of any partial line digraph ℒD. Moreover, if l < k and the girth of D is at least l +1, then these two numbers are equal. We also prove that the number of semikernels of D is equal to the number of semikernels of ℒD. Furthermore, we introduce the concept of (k, l)-Grundy function as a generalization of the concept of Grundy function and we prove that the number of (k, l)-Grundy functions of D is equal to the number of (k, l)-Grundy functions of any partial line digraph ℒD.

[1]  Iwona Wloch,et al.  On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs , 2008, Discret. Math..

[2]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[3]  M. Aigner On the linegraph of a directed graph , 1967 .

[4]  Cameron Browne,et al.  Hex strategy - making the right connections , 2000 .

[5]  Elwyn R. Berlekamp Combinatorial Games , 2006, ITW.

[6]  Andrzej W loch,et al.  53 No . 4 2009 , 571-581 ON ( k , l )-KERNELS IN THE CORONA OF DIGRAPHS , 2010 .

[7]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[8]  Miguel Angel Fiol,et al.  The Partial Line Digraph Technique in the Design of Large Interconnection Networks , 1992, IEEE Trans. Computers.

[9]  Aviezri S. Fraenkel,et al.  Combinatorial Games: selected Bibliography with a Succinct Gourmet Introduction , 2012 .

[10]  Hortensia Galeana-Sánchez,et al.  Kernels in edge coloured line digraph , 1998, Discuss. Math. Graph Theory.

[11]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[12]  Iwona Wloch,et al.  On (k, l)-kernels in D-join of digraphs , 2007, Discuss. Math. Graph Theory.

[13]  Claude Berge,et al.  A combinatorial problem in logic , 1977, Discret. Math..

[14]  Hortensia Galeana-Sánchez,et al.  Semikernels and (k, l)-Kernels in Digraphs , 1998, SIAM J. Discret. Math..

[15]  Hortensia Galeana-Sánchez,et al.  On the Existence of (k,l)-Kernels in Infinite Digraphs: A Survey , 2014, Discuss. Math. Graph Theory.

[16]  Hortensia Galeana-Sánchez,et al.  Semikernels, Quasi Kernels, and Grundy Functions in the Line Digraph , 1991, SIAM J. Discret. Math..

[17]  Vladimir Gurvich,et al.  Perfect graphs, kernels, and cores of cooperative games , 2006, Discret. Math..

[18]  Miguel Angel Fiol,et al.  Line digraph iterations and the (d,k) problem for directed graphs , 1983, ISCA '83.

[19]  Miguel Ángel Guevara-López,et al.  Kernels and partial line digraphs , 2010, Appl. Math. Lett..

[20]  Claude Berge,et al.  Recent problems and results about kernels in directed graphs , 1991, Discret. Math..

[21]  Helmut Prodinger,et al.  Fibonacci Numbers of Graphs: II , 1983, The Fibonacci Quarterly.

[22]  Shan Er-fang,et al.  (k,l)-kernels in line digraphs , 2006 .