High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity

Practical implementations of biosensing with metallic nanostructures often suffer from the large line width of the plasmon resonances induced by large radiative damping. A double split nanoring cavity is designed to suppress the radiative damping. The coupling between the superradiant quadrupole mode of a split nanoring with one gap and the subradiant quadrupole mode of a split nanoring with two gaps leads to splitting of the modal energies into bonding and antibonding quadrupole–quadrupole modes. The radiative damping is suppressed effectively, leading to a narrow line width for both bonding and antibonding quadrupole–quadrupole modes. Calculation results show that bulk refractive index sensitivities exceeding 1200 nm/RIU with a figure of merit exceeding 8.5 in the near-infrared are obtained with a Au double split nanoring cavity. The large cavity volumes and uniform electric fields inside the cavity make the double split nanoring cavity a good platform for surface-enhanced molecular sensing.

[1]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[2]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[3]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[4]  J. Hafner,et al.  Optical properties of star-shaped gold nanoparticles. , 2006, Nano letters.

[5]  Jay T. Groves,et al.  A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces , 2009, Nano letters.

[6]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[7]  K. Vernon,et al.  Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. , 2010, Nano letters.

[8]  Alasdair W. Clark,et al.  Multiple plasmon resonances from gold nanostructures , 2007 .

[9]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[10]  S. Bozhevolnyi,et al.  Demonstration of scattering suppression in retardation-based plasmonic nanoantennas. , 2010, Optics express.

[11]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[12]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[13]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[14]  Naomi J. Halas,et al.  Nanosphere-in-a-Nanoshell: A Simple Nanomatryushka† , 2010 .

[15]  H. Fredriksson,et al.  Enhanced nanoplasmonic optical sensors with reduced substrate effect. , 2008, Nano letters.

[16]  Jonathan M Cooper,et al.  Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. , 2009, Journal of the American Chemical Society.

[17]  Basudev Lahiri,et al.  Asymmetric split ring resonators for optical sensing of organic materials. , 2009, Optics express.

[18]  Wakana Kubo,et al.  Au double nanopillars with nanogap for plasmonic sensor. , 2011, Nano letters.

[19]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[20]  Liesbet Lagae,et al.  Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. , 2011, Nano letters.

[21]  P. Nordlander,et al.  Shedding light on dark plasmons in gold nanorings , 2008 .

[22]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[23]  Peter Nordlander,et al.  Fano resonances in plasmonic nanoparticle aggregates. , 2009, The journal of physical chemistry. A.

[24]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[25]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[26]  P. Nordlander,et al.  Plasmon hybridization in stacked double gold nanorings with reduced symmetry. , 2008, Small.

[27]  M. Willatzen,et al.  From plasmonic nanoantennas to split-ring resonators: tuning scattering strength , 2010 .

[28]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[29]  Per Hanarp,et al.  Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography , 2003 .

[30]  Mikael Käll,et al.  Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. , 2009, Nano letters.

[31]  M. El-Sayed,et al.  Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. , 2005, The journal of physical chemistry. B.

[32]  A. Serga,et al.  Experimental observation of symmetry-breaking nonlinear modes in an active ring , 2003, Nature.

[33]  G. Barbastathis,et al.  Macroscopic invisibility cloak for visible light. , 2010, Physical review letters.

[34]  T. Odom,et al.  Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors. , 2010, Nano letters.

[35]  P. Nussenzveig,et al.  Classical analog of electromagnetically induced transparency , 2001, quant-ph/0107061.

[36]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[37]  Yasin Ekinci,et al.  Symmetry breaking in a plasmonic metamaterial at optical wavelength. , 2008, Nano letters.

[38]  J. Hafner,et al.  Symmetry breaking in individual plasmonic nanoparticles. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Federico Capasso,et al.  Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. , 2010, Nano letters.

[40]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[41]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[42]  P. Nordlander,et al.  Fanoshells: nanoparticles with built-in Fano resonances. , 2010, Nano letters.

[43]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[44]  Peter Nordlander,et al.  Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. , 2009, ACS nano.

[45]  Niels Verellen,et al.  Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. , 2010, ACS nano.

[46]  V. Kravets,et al.  Sensitivity of collective plasmon modes of gold nanoresonators to local environment. , 2010, Optics letters.

[47]  Q. Q. Wang,et al.  High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation. , 2009, Optics express.

[48]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[49]  Bin Liang,et al.  Acoustic cloaking by a superlens with single-negative materials. , 2011, Physical review letters.

[50]  Weiyang Li,et al.  Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. , 2009, Nano letters.

[51]  Ruiping Liu,et al.  Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity. , 2011, Optics express.

[52]  Xiang Zhang,et al.  Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 , 2009 .

[53]  Jianfang Wang,et al.  Shape- and size-dependent refractive index sensitivity of gold nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[54]  P. Schuck,et al.  Theta-shaped plasmonic nanostructures: bringing "dark" multipole plasmon resonances into action via conductive coupling. , 2011, Nano letters.

[55]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[56]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[57]  N. Vitanov,et al.  Electromagnetically induced transparency and slow light in an array of metallic nanoparticles , 2009 .

[58]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[59]  M. Willatzen,et al.  Detuned electrical dipoles for plasmonic sensing. , 2010, Nano letters.

[60]  Federico Capasso,et al.  Fano-like interference in self-assembled plasmonic quadrumer clusters. , 2010, Nano letters.