Extremal properties of (epi)Sturmian sequences and distribution modulo 1

Starting from a study of Y. Bugeaud and A. Dubickas (2005) on a question in distribution of real numbers modulo 1 via combinatorics on words, we survey some combinatorial properties of (epi)Sturmian sequences and distribution modulo 1 in connection to their work. In particular we focus on extremal properties of (epi)Sturmian sequences, some of which have been rediscovered several times.

[1]  O. Jenkinson A PARTIAL ORDER ON ◊2-INVARIANT MEASURES , 2008 .

[2]  I. Barakat Pierre , 2009 .

[3]  Jean-Paul Allouche,et al.  Non-Integer Bases, Iteration of Continuous Real Maps, and an Arithmetic Self-Similar set , 2001 .

[4]  Gwénaël Richomme,et al.  Directive words of episturmian words: equivalences and normalization , 2008, RAIRO Theor. Informatics Appl..

[5]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[6]  Colin Sparrow,et al.  Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps , 1993 .

[7]  Jean Berstel,et al.  A Remark on Morphic Sturmian Words , 1994, RAIRO Theor. Informatics Appl..

[8]  G. Rauzy,et al.  Mots infinis en arithmétique , 1984, Automata on Infinite Words.

[9]  K. Keller Invariant factors, Julia equivalences, and the (abstract) Mandelbrot set , 2000 .

[10]  Aldo de Luca,et al.  Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..

[11]  Powers of a rational number modulo 1 cannot lie in a small interval , 2009 .

[12]  A. Dubickas On the distance from a rational power to the nearest integer , 2006 .

[13]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[14]  Jacques Justin Episturmian morphisms and a Galois theorem on continued fractions , 2005, RAIRO Theor. Informatics Appl..

[15]  Essential Dynamics for Lorenz maps on the real line and the Lexicographical World ? ? Partially supp , 2006 .

[16]  Jacques Sakarovitch,et al.  Powers of rationals modulo 1 and rational base number systems , 2008 .

[17]  L. Alsedà,et al.  A characterization of the kneading pair for bimodal degree one circle maps , 1997 .

[18]  KNEADING THEORY FOR A FAMILY OF CIRCLE MAPSWITH ONE DISCONTINUITYLl , 1999 .

[19]  Giuseppe Pirillo,et al.  Episturmian Words: Shifts, Morphisms And Numeration Systems , 2004, Int. J. Found. Comput. Sci..

[20]  Peter Veerman,et al.  Symbolic dynamics and rotation numbers , 1986 .

[21]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[22]  John C. Kieffer,et al.  Sturmian minimal systems associated with the iterates of certain functions on an interval , 1988 .

[23]  C. Moreira,et al.  Bifurcation of the essential dynamics of Lorenz maps and applications to Lorenz-like flows: Contributions to the study of the expanding case , 2001 .

[24]  Jacques Justin,et al.  Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..

[25]  The classification of topologically expansive lorenz maps , 1990 .

[26]  Shaobo Gan Sturmian sequences and the lexicographic world , 2000 .

[27]  On the topological dynamics and phase-locking renormalization of Lorenz-like maps , 2003 .

[28]  Amy Glen,et al.  Order and quasiperiodicity in episturmian words , 2007 .

[29]  Amy Glen Powers in a class of A-strict standard episturmian words , 2007, Theor. Comput. Sci..

[30]  L. Alsedà,et al.  Kneading theory and rotation intervals for a class of circle maps of degree one , 1990 .

[31]  O. Jenkinson,et al.  Which beta‐shifts have a largest invariant measure? , 2009 .

[32]  Luca Q. Zamboni,et al.  A generalization of Sturmian sequences: Combinatorial structure and transcendence , 2000 .

[33]  Peter Veerman,et al.  Symbolic dynamics of order-preserving orbits , 1987 .

[34]  Jean Berstel,et al.  A Characterization of Sturmian Morphisms , 1993, MFCS.

[35]  R. Tijdeman,et al.  On complementary triples of Sturmian bisequences , 1996 .

[36]  Yann Bugeaud,et al.  Fractional parts of powers and Sturmian words , 2005 .

[37]  Giuseppe Pirillo Inequalities characterizing standard Sturmian words , 2003 .

[38]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[39]  Filippo Mignosi,et al.  Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..

[40]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[41]  J. Karhumäki,et al.  ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .

[42]  Jean Berstel,et al.  Recent Results on Extensions of Sturmian Words , 2002, Int. J. Algebra Comput..

[43]  Laurent Vuillon,et al.  Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..

[44]  Gwénaël Richomme,et al.  A Local Balance Property of Episturmian Words , 2007, Developments in Language Theory.

[45]  Bernold Fiedler,et al.  Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .

[46]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[47]  J. Shallit,et al.  Automatic Sequences: Frequency of Letters , 2003 .

[48]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[49]  Topological invariants and renormalization of Lorenz maps , 2002 .

[50]  Giuseppe Pirillo,et al.  Inequalities characterizing standard Sturmian and episturmian words , 2005, Theor. Comput. Sci..

[51]  On the invariant factors , 1976 .

[52]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[53]  J. Lagarias,et al.  On the range of fractional parts {ξ(p/q)ⁿ} , 1995 .

[54]  S. Akiyama MAHLER ’ S Z-NUMBER AND 3 / 2 NUMBER SYSTEMS , 2009 .

[55]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[56]  Oscar E. Lanford,et al.  Dynamique symbolique des rotations , 1984 .

[57]  ITERATIONS DE FONCTIONS UNIMODALES ET SUITES ENGENDREES PAR AUTOMATES , 1983 .

[58]  J. Allouche,et al.  Distribution modulo 1 and the lexicographic world , 2009, 0907.3560.

[59]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[60]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[61]  D. Kwonb,et al.  Sturmian words, (cid:1) -shifts, and transcendence , 2004 .

[62]  Gerhard Keller,et al.  Topological and Measurable Dynamics of Lorenz Maps , 2001 .

[63]  K. Mahler,et al.  An unsolved problem on the powers of 3/2 , 1968, Journal of the Australian Mathematical Society.

[64]  Vilmos Komornik,et al.  Characterization of the unique expansions $1=\sum^{\infty}_{i=1}q^{-n_ i}$ and related problems , 1990 .

[65]  Giuseppe Pirillo,et al.  Morse and Hedlund’s Skew Sturmian Words Revisited , 2008 .

[66]  Giuseppe Pirillo,et al.  Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..

[67]  Shaun Bullett,et al.  Ordered orbits of the shift, square roots, and the devil's staircase , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[68]  Arturas Dubickas,et al.  On a sequence related to that of Thue-Morse and its applications , 2007, Discret. Math..

[69]  Jean-Pierre Borel,et al.  Quelques mots sur la droite projective réelle , 1993 .

[70]  Giuseppe Pirillo,et al.  Characterizations of finite and infinite episturmian words via lexicographic orderings , 2008, Eur. J. Comb..

[71]  Jean-Paul Allouche,et al.  A note on univoque self-Sturmian numbers , 2006, RAIRO Theor. Informatics Appl..

[72]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.

[73]  Amy Glen A characterization of fine words over a finite alphabet , 2008, Theor. Comput. Sci..

[74]  Giuseppe Pirillo,et al.  Palindromes and Sturmian Words , 1999, Theor. Comput. Sci..

[75]  G. A. Hedlund,et al.  Sturmian Minimal Sets , 1944 .

[76]  A. Dubickas Arithmetical Properties of Powers of Algebraic Numbers , 2006 .

[77]  Toufik Zaïmi An arithmetical property of powers of Salem numbers , 2006 .

[78]  Giuseppe Pirillo,et al.  On a characteristic property of ARNOUX-RAUZY sequences , 2002, RAIRO Theor. Informatics Appl..

[79]  Jean-Paul Allouche Théorie des nombres et automates , 1983 .

[80]  DoYong Kwon A devil's staircase from rotations and irrationality measures for Liouville numbers , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[81]  O. Jenkinson Optimization and majorization of invariant measures , 2007 .

[82]  Filippo Mignosi,et al.  On the number of Arnoux–Rauzy words , 2002 .

[83]  Jean Berstel,et al.  Sturmian and episturmian words: a survey of some recent results , 2007 .

[84]  Luca Q. Zamboni,et al.  Characterisations of balanced words via orderings , 2004, Theor. Comput. Sci..