Extremal properties of (epi)Sturmian sequences and distribution modulo 1
暂无分享,去创建一个
[1] O. Jenkinson. A PARTIAL ORDER ON ◊2-INVARIANT MEASURES , 2008 .
[2] I. Barakat. Pierre , 2009 .
[3] Jean-Paul Allouche,et al. Non-Integer Bases, Iteration of Continuous Real Maps, and an Arithmetic Self-Similar set , 2001 .
[4] Gwénaël Richomme,et al. Directive words of episturmian words: equivalences and normalization , 2008, RAIRO Theor. Informatics Appl..
[5] Filippo Mignosi,et al. Morphismes sturmiens et règles de Rauzy , 1993 .
[6] Colin Sparrow,et al. Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps , 1993 .
[7] Jean Berstel,et al. A Remark on Morphic Sturmian Words , 1994, RAIRO Theor. Informatics Appl..
[8] G. Rauzy,et al. Mots infinis en arithmétique , 1984, Automata on Infinite Words.
[9] K. Keller. Invariant factors, Julia equivalences, and the (abstract) Mandelbrot set , 2000 .
[10] Aldo de Luca,et al. Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..
[11] Powers of a rational number modulo 1 cannot lie in a small interval , 2009 .
[12] A. Dubickas. On the distance from a rational power to the nearest integer , 2006 .
[13] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[14] Jacques Justin. Episturmian morphisms and a Galois theorem on continued fractions , 2005, RAIRO Theor. Informatics Appl..
[15] Essential Dynamics for Lorenz maps on the real line and the Lexicographical World ? ? Partially supp , 2006 .
[16] Jacques Sakarovitch,et al. Powers of rationals modulo 1 and rational base number systems , 2008 .
[17] L. Alsedà,et al. A characterization of the kneading pair for bimodal degree one circle maps , 1997 .
[18] KNEADING THEORY FOR A FAMILY OF CIRCLE MAPSWITH ONE DISCONTINUITYLl , 1999 .
[19] Giuseppe Pirillo,et al. Episturmian Words: Shifts, Morphisms And Numeration Systems , 2004, Int. J. Found. Comput. Sci..
[20] Peter Veerman,et al. Symbolic dynamics and rotation numbers , 1986 .
[21] Ethan M. Coven,et al. Sequences with minimal block growth , 2005, Mathematical systems theory.
[22] John C. Kieffer,et al. Sturmian minimal systems associated with the iterates of certain functions on an interval , 1988 .
[23] C. Moreira,et al. Bifurcation of the essential dynamics of Lorenz maps and applications to Lorenz-like flows: Contributions to the study of the expanding case , 2001 .
[24] Jacques Justin,et al. Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..
[25] The classification of topologically expansive lorenz maps , 1990 .
[26] Shaobo Gan. Sturmian sequences and the lexicographic world , 2000 .
[27] On the topological dynamics and phase-locking renormalization of Lorenz-like maps , 2003 .
[28] Amy Glen,et al. Order and quasiperiodicity in episturmian words , 2007 .
[29] Amy Glen. Powers in a class of A-strict standard episturmian words , 2007, Theor. Comput. Sci..
[30] L. Alsedà,et al. Kneading theory and rotation intervals for a class of circle maps of degree one , 1990 .
[31] O. Jenkinson,et al. Which beta‐shifts have a largest invariant measure? , 2009 .
[32] Luca Q. Zamboni,et al. A generalization of Sturmian sequences: Combinatorial structure and transcendence , 2000 .
[33] Peter Veerman,et al. Symbolic dynamics of order-preserving orbits , 1987 .
[34] Jean Berstel,et al. A Characterization of Sturmian Morphisms , 1993, MFCS.
[35] R. Tijdeman,et al. On complementary triples of Sturmian bisequences , 1996 .
[36] Yann Bugeaud,et al. Fractional parts of powers and Sturmian words , 2005 .
[37] Giuseppe Pirillo. Inequalities characterizing standard Sturmian words , 2003 .
[38] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[39] Filippo Mignosi,et al. Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..
[40] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[41] J. Karhumäki,et al. ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .
[42] Jean Berstel,et al. Recent Results on Extensions of Sturmian Words , 2002, Int. J. Algebra Comput..
[43] Laurent Vuillon,et al. Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..
[44] Gwénaël Richomme,et al. A Local Balance Property of Episturmian Words , 2007, Developments in Language Theory.
[45] Bernold Fiedler,et al. Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .
[46] Jeffrey Shallit,et al. Automatic Sequences: Theory, Applications, Generalizations , 2003 .
[47] J. Shallit,et al. Automatic Sequences: Frequency of Letters , 2003 .
[48] Giuseppe Pirillo,et al. Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..
[49] Topological invariants and renormalization of Lorenz maps , 2002 .
[50] Giuseppe Pirillo,et al. Inequalities characterizing standard Sturmian and episturmian words , 2005, Theor. Comput. Sci..
[51] On the invariant factors , 1976 .
[52] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .
[53] J. Lagarias,et al. On the range of fractional parts {ξ(p/q)ⁿ} , 1995 .
[54] S. Akiyama. MAHLER ’ S Z-NUMBER AND 3 / 2 NUMBER SYSTEMS , 2009 .
[55] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[56] Oscar E. Lanford,et al. Dynamique symbolique des rotations , 1984 .
[57] ITERATIONS DE FONCTIONS UNIMODALES ET SUITES ENGENDREES PAR AUTOMATES , 1983 .
[58] J. Allouche,et al. Distribution modulo 1 and the lexicographic world , 2009, 0907.3560.
[59] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[60] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[61] D. Kwonb,et al. Sturmian words, (cid:1) -shifts, and transcendence , 2004 .
[62] Gerhard Keller,et al. Topological and Measurable Dynamics of Lorenz Maps , 2001 .
[63] K. Mahler,et al. An unsolved problem on the powers of 3/2 , 1968, Journal of the Australian Mathematical Society.
[64] Vilmos Komornik,et al. Characterization of the unique expansions $1=\sum^{\infty}_{i=1}q^{-n_ i}$ and related problems , 1990 .
[65] Giuseppe Pirillo,et al. Morse and Hedlund’s Skew Sturmian Words Revisited , 2008 .
[66] Giuseppe Pirillo,et al. Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..
[67] Shaun Bullett,et al. Ordered orbits of the shift, square roots, and the devil's staircase , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.
[68] Arturas Dubickas,et al. On a sequence related to that of Thue-Morse and its applications , 2007, Discret. Math..
[69] Jean-Pierre Borel,et al. Quelques mots sur la droite projective réelle , 1993 .
[70] Giuseppe Pirillo,et al. Characterizations of finite and infinite episturmian words via lexicographic orderings , 2008, Eur. J. Comb..
[71] Jean-Paul Allouche,et al. A note on univoque self-Sturmian numbers , 2006, RAIRO Theor. Informatics Appl..
[72] Ethan M. Coven,et al. Sequences with minimal block growth II , 1973, Mathematical systems theory.
[73] Amy Glen. A characterization of fine words over a finite alphabet , 2008, Theor. Comput. Sci..
[74] Giuseppe Pirillo,et al. Palindromes and Sturmian Words , 1999, Theor. Comput. Sci..
[75] G. A. Hedlund,et al. Sturmian Minimal Sets , 1944 .
[76] A. Dubickas. Arithmetical Properties of Powers of Algebraic Numbers , 2006 .
[77] Toufik Zaïmi. An arithmetical property of powers of Salem numbers , 2006 .
[78] Giuseppe Pirillo,et al. On a characteristic property of ARNOUX-RAUZY sequences , 2002, RAIRO Theor. Informatics Appl..
[79] Jean-Paul Allouche. Théorie des nombres et automates , 1983 .
[80] DoYong Kwon. A devil's staircase from rotations and irrationality measures for Liouville numbers , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.
[81] O. Jenkinson. Optimization and majorization of invariant measures , 2007 .
[82] Filippo Mignosi,et al. On the number of Arnoux–Rauzy words , 2002 .
[83] Jean Berstel,et al. Sturmian and episturmian words: a survey of some recent results , 2007 .
[84] Luca Q. Zamboni,et al. Characterisations of balanced words via orderings , 2004, Theor. Comput. Sci..