LOCAL FOURIER ANALYSIS OF BDDC-LIKE ALGORITHMS∗

Local Fourier analysis is a commonly used tool for the analysis of multigrid and other multilevel algorithms, providing both insight into observed convergence rates and predictive analysis of the performance of many algorithms. In this paper, we adapt local Fourier analysis to examine variants of twoand three-level BDDC algorithms, to better understand the eigenvalue distributions and condition number bounds on these preconditioned operators. This adaptation is based on a new choice of basis for the space of Fourier harmonics that greatly simplifies the application of local Fourier analysis in this setting. The local Fourier analysis is validated by considering the two dimensional Laplacian and predicting the condition numbers of the preconditioned operators with different sizes of subdomains. Several variants are analyzed, showing the twoand three-level performance of the “lumped” variant can be greatly improved when used in multiplicative combination with a weighted diagonal scaling preconditioner, with weight optimized through the use of LFA.

[1]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[2]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[3]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[4]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[5]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[6]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[7]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[8]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[9]  Olof B. Widlund,et al.  A FETI - DP Method for a Mortar Discretization of Elliptic Problems , 2002 .

[10]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[11]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[12]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[13]  Jing Li,et al.  A Dual-Primal FETI method for incompressible Stokes equations , 2005, Numerische Mathematik.

[14]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[15]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[16]  Olof B. Widlund,et al.  BDDC Algorithms for Incompressible Stokes Equations , 2006, SIAM J. Numer. Anal..

[17]  Olof B. Widlund,et al.  A BDDC Preconditioner for Saddle Point Problems , 2007 .

[18]  C. Dohrmann Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach , 2007 .

[19]  Juan Galvis,et al.  BDDC methods for discontinuous Galerkin discretization of elliptic problems , 2007, J. Complex..

[20]  Xuemin Tu,et al.  Three‐level BDDC in two dimensions , 2007 .

[21]  Clark R. Dohrmann,et al.  An approximate BDDC preconditioner , 2007, Numer. Linear Algebra Appl..

[22]  Susanne C. Brenner,et al.  BDDC and FETI-DP without matrices or vectors , 2007 .

[23]  Xuemin Tu Three-Level BDDC in Three Dimensions , 2007, SIAM J. Sci. Comput..

[24]  O. Widlund,et al.  On the use of inexact subdomain solvers for BDDC algorithms , 2007 .

[25]  Cornelis W. Oosterlee,et al.  Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs , 2011, Numer. Linear Algebra Appl..

[26]  Olof B. Widlund,et al.  Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic Problems , 2015 .

[27]  Olof B. Widlund,et al.  A BDDC Algorithm with Deluxe Scaling for Three‐Dimensional H(curl) Problems , 2016 .

[28]  A BDDC PRECONDITIONER FOR A SYMMETRIC INTERIOR PENALTY GALERKIN METHOD∗ , 2017 .