Magnesium Tetra(phenylethynyl)porphyrin: Stepwise Synthetic Route, Crystal Structures, and Longer Singlet Excited-State Lifetime than Zinc Congener.

Magnesium tetra(arylethynyl)porphyrins (aryl=Ph or 4-CF3 C6 H4 ) were synthesized via 5,15-di(triisopropylsilylethynyl)-10,20-di(arylethynyl)porphyrin to ensure good solubility and high synthetic yields. Magnesium tetra(phenylethynyl)porphyrin was subjected to structural analyses and physico-chemical characterization. Single-crystal X-ray analysis revealed porous crystal structures featuring solvent molecules in their pores. From femtosecond transient absorption measurements we concluded that the singlet excited-state lifetime of magnesium tetra(phenylethynyl)porphyrin is with 7.4 ns substantially longer than that of its zinc congener with 2.8 ns; this is attributed to the lower atomic weight of magnesium compared with zinc.

[1]  Huan Wang,et al.  Substituent effects in magnesium tetraethynylporphyrin with two diketopyrrolopyrrole units for bulk heterojunction organic solar cells , 2017 .

[2]  R. Banerjee,et al.  A porous porphyrin organic polymer (PPOP) for visible light triggered hydrogen production. , 2017, Chemical communications.

[3]  Yang Yang,et al.  Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. , 2015, Chemical reviews.

[4]  W. Maes,et al.  Porphyrin‐Based Bulk Heterojunction Organic Photovoltaics: The Rise of the Colors of Life , 2015 .

[5]  L. Herz,et al.  A Molecular Nanotube with Three‐Dimensional π‐Conjugation , 2015, Angewandte Chemie.

[6]  L. Herz,et al.  A Molecular Nanotube with Three-Dimensional π-Conjugation** , 2015, Angewandte Chemie.

[7]  Y. Matsuo,et al.  Diporphyrin magnesium complex with long-wavelength light absorption for organic solar cells , 2015 .

[8]  M. Drobizhev,et al.  Soluble meso-tetrakis(arylethynyl)porphyrins — synthesis and optical properties , 2014 .

[9]  S. Najmudin,et al.  Exploring the Effects of Axial Pseudohalide Ligands on the Photophysical and Cyclic Voltammetry Properties and Molecular Structures of MgII Tetraphenyl/porphyrin Complexes , 2014 .

[10]  Y. Matsuo,et al.  Influence of additives in bulk heterojunction solar cells using magnesium tetraethynylporphyrin with triisopropylsilyl and anthryl substituents , 2014 .

[11]  L. Wojtas,et al.  A porous metal-metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions. , 2014, Chemical communications.

[12]  H. Tamura,et al.  Exciton diffusion length and charge mobility in donor and acceptor materials in organic photovoltaics: Tetrabenzoporphyrin and silylmethyl[60] fullerene , 2014 .

[13]  Y. Matsuo,et al.  cis‐substituted tetraethynylporphyrin derivatives for small molecule organic solar cells , 2014 .

[14]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[15]  M. D. Hopkins,et al.  Near-infrared transient-absorption spectroscopy of zinc tetraphenylporphyrin and related compounds. Observation of bands that selectively probe the S1 excited state , 2013 .

[16]  Shengqian Ma,et al.  A porous covalent porphyrin framework with exceptional uptake capacity of saturated hydrocarbons for oil spill cleanup. , 2013, Chemical communications.

[17]  E. Nakamura,et al.  Photostability of a dyad of magnesium porphyrin and fullerene and its application to photocurrent conversion. , 2013, Chemical communications.

[18]  Y. Matsuo,et al.  Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor , 2013 .

[19]  Luping Yu,et al.  Nanoporous Porphyrin Polymers for Gas Storage and Separation , 2012 .

[20]  Y. Matsuo,et al.  Soluble porphyrin donors for small molecule bulk heterojunction solar cells , 2012 .

[21]  P. Wiper,et al.  A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. , 2012, Angewandte Chemie.

[22]  Katharine M. Mullen,et al.  Glotaran: A Java-Based Graphical User Interface for the R Package TIMP , 2012 .

[23]  John Mondal,et al.  Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. , 2012, Chemical communications.

[24]  L. Wojtas,et al.  Three-dimensional porous metal-metalloporphyrin framework consisting of nanoscopic polyhedral cages. , 2011, Journal of the American Chemical Society.

[25]  Shuichi Suzuki,et al.  Efficient light-harvesting antenna with a multi-porphyrin cascade. , 2011, Journal of the American Chemical Society.

[26]  R. Fröhlich,et al.  Effect of five membered versus six membered meso-substituents on structure and electronic properties of Mg(II) porphyrins: a combined experimental and theoretical study. , 2010, Inorganic chemistry.

[27]  Umakanta Tripathy,et al.  Photophysics of Soret-excited tetrapyrroles in solution. I. Metalloporphyrins: MgTPP, ZnTPP, and CdTPP. , 2008, The journal of physical chemistry. A.

[28]  C. Yeh,et al.  New synthesis of zinc tetrakis(arylethynyl)porphyrins and substituent effects on their redox chemistry. , 2007, Dalton transactions.

[29]  Vladimir V. Apanasovich,et al.  Fluorescence Lifetime Imaging Microscopy (FLIM) data analysis with TIMP , 2007 .

[30]  K. Fukumori,et al.  New porphyrin-based metal-organic framework with high porosity: 2-D infinite 22.2-A square-grid coordination network. , 2006, Inorganic chemistry.

[31]  Scott R. Wilson,et al.  Microporous porphyrin solids. , 2005, Accounts of chemical research.

[32]  N. Ono,et al.  Controlling conformations and physical properties of meso-tetrakis(phenylethynyl)porphyrins by ring fusion: synthesis, properties and structural characterizations. , 2004, Organic & biomolecular chemistry.

[33]  T. Nyokong,et al.  Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives , 2003 .

[34]  M. Fontaine‐Aupart,et al.  Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy , 2002 .

[35]  J. D. Spence,et al.  Porphyrins with exocyclic rings. 14. Synthesis of tetraacenaphthoporphyrins, a new family of highly conjugated porphyrins with record-breaking long-wavelength electronic absorptions. , 2000, The Journal of organic chemistry.

[36]  R. Wagner,et al.  Investigation and Refinement of Palladium-Coupling Conditions for the Synthesis of Diarylethyne-Linked Multiporphyrin Arrays , 1999 .

[37]  G. Yahioglu,et al.  Improved synthesis of 10,20-bis- and 5,10,15,20-tetraethynylporphyrins via ethynyl protection with dicobalt octacarbonyl , 1997 .

[38]  G. Yahioglu,et al.  Trans-disubstituted meso-tetraethynylporphyrins , 1996 .

[39]  G. Yahioglu,et al.  5,10,15,20-MESO-TETRAARYLETHYNYLPORPHYRINS , 1995 .

[40]  Y. Hsiou,et al.  Porphyrin sponges: conservative of host structure in over 200 porphyrin-based lattice clathrates , 1993 .

[41]  H. Anderson Meso-alkynyl porphyrins , 1992 .

[42]  Marianne P. Byrn,et al.  Porphyrin sponges. Inversion disorder and inversion twinning in lattice clathrates based on five-coordinate metallotetraarylporphyrin complexes , 1991 .

[43]  Y. Kaizu,et al.  Luminescence of some metalloporphins including the complexes of the IIIb metal group , 1985 .

[44]  J. Yao,et al.  Design of Diketopyrrolopyrrole (DPP)‐Based Small Molecules for Organic‐Solar‐Cell Applications , 2017, Advanced materials.

[45]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[46]  Liu Xianming,et al.  A Time Petri Net Extended with Price Information , 2007 .

[47]  L. Hevesi,et al.  Synthesis of meso-tetraalkylnyl porphyrins using 1-seleno-2-alkynyl cation precursors , 1992 .

[48]  J. A. Ferreira,et al.  Absorption coefficients and fluorescence quantum yields of porphyrin films determined by optical and photoacoustic spectroscopies , 1991 .