V2O5 Nanowires with an Intrinsic Peroxidase‐Like Activity

V2O5 nanowires exhibit an intrinsic catalytic activity towards classical peroxidase substrates such as 2,2‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS) and 3,3,5,5,‐tetramethylbenzdine (TMB) in the presence of H2O2. These V2O5 nanowires show an optimum reactivity at a pH of 4.0 and the catalytic activity is dependent on the concentration. The Michaelis‐Menten kinetics of the ABTS oxidation over these nanowires reveals a behavior similar to that of their natural vanadium‐dependent haloperoxidase (V‐HPO) counterparts. The V2O5 nanowires mediate the oxidation of ABTS in the presence of H2O2 with a turnover frequency (kcat) of 2.5 × 103 s−1. The KM values of the V2O5 nanowires for ABTS oxidation (0.4 μM) and for H2O2 (2.9 μM) at a pH of 4.0 are significantly smaller than those reported for horseradish peroxidases (HRP) and V‐HPO indicating a higher affinity of the substrates for the V2O5 nanowire surface. Based on the kinetic parameters and similarity with vanadium‐based complexes a mechanism is proposed where an intermediate metastable peroxo complex is formed as the first catalytic step. The nanostructured vanadium‐based material can be re‐used up to 10 times and retains its catalytic activity in a wide range of organic solvents (up to 90%) making it a promising mimic of peroxidase catalysts.

[1]  Alison Butler,et al.  Mechanistic considerations of halogenating enzymes , 2009, Nature.

[2]  P. Novák,et al.  Electrochemistry of LiV3O8 Nanoparticles Made by Flame Spray Pyrolysis , 2008 .

[3]  F. Zhou,et al.  Vanadium Pentoxide Nanowires: Hydrothermal Synthesis, Formation Mechanism, and Phase Control Parameters , 2008 .

[4]  R. Torresi,et al.  Investigation of the Electrical and Electrochemical Properties of Nanocomposites from V2O5, Polypyrrole, and Polyaniline , 2008 .

[5]  D. Aurbach,et al.  The Study of Carbon-Coated V2O5 Nanoparticles as a Potential Cathodic Material for Li Rechargeable Batteries , 2007 .

[6]  H. Dunford In Peroxidases and Catalases , 2007 .

[7]  Yi Cui,et al.  Fast, completely reversible li insertion in vanadium pentoxide nanoribbons. , 2007, Nano letters.

[8]  M. Maurya Structural models of vanadate-dependent haloperoxidases and their reactivity , 2006 .

[9]  S. Pratsinis,et al.  Ceramic foams directly-coated with flame-made V2O5/TiO2 for synthesis of phthalic anhydride , 2006 .

[10]  Umesh Kumar,et al.  Polymer supported vanadium and molybdenum complexes as potential catalysts for the oxidation and oxidative bromination of organic substrates. , 2006, Dalton transactions.

[11]  Hongyuan Chen,et al.  Sonochemical route for self-assembled V2O5 bundles with spindle-like morphology and their novel application in serum albumin sensing. , 2006, The journal of physical chemistry. B.

[12]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[13]  Fu-Rong Chen,et al.  V2O5 nanowires as a functional material for electrochromic device , 2006 .

[14]  Benxia Li,et al.  Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities , 2006, Nanotechnology.

[15]  D. Lincot,et al.  Alkali ion intercalation in V2O5: preparation and laboratory characterization of thin films produced by ALD , 2006 .

[16]  M. Maugey,et al.  Macroscopic Fibers of Oriented Vanadium Oxide Ribbons and Their Application as Highly Sensitive Alcohol Microsensors , 2005 .

[17]  Ulrich Schlecht,et al.  V2O5 nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines , 2005 .

[18]  Tsunehiro Tanaka,et al.  Selective photocatalytic oxidation of light alkanes over alkali-ion-modified V2O5/SiO2; kinetic study and reaction mechanism. , 2005, The journal of physical chemistry. B.

[19]  Qing Peng,et al.  Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials , 2005 .

[20]  L. De Gioia,et al.  Reactivity of peroxo forms of the vanadium haloperoxidase cofactor. A DFT investigation. , 2005, Journal of the American Chemical Society.

[21]  M. Maurya,et al.  Oxidative bromination of salicylaldehyde by potassium bromide/H2O2 catalysed by dioxovanadium(V) complexes encapsulated in zeolite–Y: a functional model of haloperoxidases , 2004 .

[22]  A. Manthiram,et al.  Nanostructured electrodes for next generation rechargeable electrochemical devices , 2004 .

[23]  Tsunehiro Tanaka,et al.  Steady-state photocatalytic epoxidation of propene by O2 over V2O5SiO2 photocatalysts. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[24]  D. Crans,et al.  The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. , 2004, Chemical reviews.

[25]  T. Punniyamurthy,et al.  Novel vanadium-catalyzed oxidation of alcohols to aldehydes and ketones under atmospheric oxygen. , 2004, Organic letters.

[26]  R. Wever,et al.  Kinetic characterization of active site mutants Ser402Ala and Phe397His of vanadium chloroperoxidase from the fungus Curvularia inaequalis , 2003 .

[27]  J. Livage,et al.  Towards smart artificial muscle , 2003, Nature materials.

[28]  B. Feringa,et al.  Catalytic oxidations by vanadium complexes , 2003 .

[29]  J. Saraiva,et al.  Inactivation and reactivation kinetics of horseradish peroxidase in phosphate buffer and buffer – dimethylformamide solutions , 2002 .

[30]  V. Pecoraro,et al.  Oxidation of organic sulfides by vanadium haloperoxidase model complexes. , 2002, Inorganic chemistry.

[31]  R. Nesper,et al.  Nanoröhren und Nanostäbe auf Oxidbasis – anisotrope Bausteine für künftige Nanotechnologien , 2002 .

[32]  M. Paganini,et al.  Continuous wave electron paramagnetic resonance investigation of the hyperfine structure of 17O2− adsorbed on the MgO surface , 2002 .

[33]  M. Whittingham,et al.  Manganese Vanadium Oxide Nanotubes: Synthesis, Characterization, and Electrochemistry , 2001 .

[34]  Ricardo A. Melo,et al.  Vanadium haloperoxidases from brown algae of the Laminariaceae family. , 2001, Phytochemistry.

[35]  A. Butler,et al.  On the regiospecificity of vanadium bromoperoxidase. , 2001, Journal of the American Chemical Society.

[36]  D. Dey,et al.  Peroxometal-mediated environmentally favorable route to brominating agents and protocols for bromination of organics , 2001 .

[37]  J. Livage,et al.  Electrooptic Effects in the Nematic and Isotropic Phases of Aqueous V2O5 Suspensions , 2000 .

[38]  J. Clark,et al.  Vanadium-Catalysed Oxidative Bromination Using Dilute Mineral Acids and Hydrogen Peroxide: An Option for Recycling Waste Acid Streams , 2000 .

[39]  H. Schoemaker,et al.  Oxidation reactions catalyzed by vanadium chloroperoxidase from Curvularia inaequalis. , 2000, Journal of inorganic biochemistry.

[40]  Gopinath,et al.  Regioselective bromination of organic substrates by tetrabutylammonium bromide promoted by V2O5-H2O2: an environmentally favorable synthetic protocol , 2000, Organic letters.

[41]  R. Nesper,et al.  Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes , 1999 .

[42]  P. Novák,et al.  Vanadium Oxide Nanotubes. A New Nanostructured Redox‐Active Material for the Electrochemical Insertion of Lithium , 1999 .

[43]  J. Gale,et al.  Lithium Intercalation into Vanadium Pentoxide: a Theoretical Study , 1999 .

[44]  A. Butler Mechanistic considerations of the vanadium haloperoxidases , 1999 .

[45]  H. Schoemaker,et al.  Enantioselective Sulfoxidation Catalyzed by Vanadium Haloperoxidases. , 1998, Inorganic chemistry.

[46]  R. Nesper,et al.  Redoxaktive Nanoröhren aus Vanadiumoxid , 1998 .

[47]  S. Passerini,et al.  Intercalation of Polyvalent Cations into V2O5 Aerogels , 1998 .

[48]  James A. Nicell,et al.  Potential Applications of Enzymes in Waste Treatment , 1997 .

[49]  B. Notari Microporous Crystalline Titanium Silicates , 1996 .

[50]  A. Butler,et al.  Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies. , 1995, Biochemistry.

[51]  A. Butler,et al.  Vanadium Peroxide Complexes , 1994 .

[52]  A. Butler,et al.  Biomimics of vanadium bromoperoxidase : vanadium(V)-schiff base catalyzed oxidation of bromide by hydrogen peroxide , 1993 .

[53]  S. Roberts,et al.  Biotransformation of alkenes by haloperoxidases: Regiospecific bromohydrin formation from cinnamyl substrates , 1993, Biotechnology Letters.

[54]  R. Wever,et al.  The chloroperoxidase from the fungus Curvularia inaequalis; a novel vanadium enzyme. , 1993, Biochimica et biophysica acta.

[55]  J. Haber,et al.  Oxygen in catalysis , 1990 .

[56]  K. Nakanishi,et al.  The tunichromes. A class of reducing blood pigments from sea squirts: isolation, structures, and vanadium chemistry. , 1988, Journal of the American Chemical Society.

[57]  Toby H. Richardson,et al.  The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme , 1986, Nature.

[58]  Y. Kooyk,et al.  Bromoperoxidase from Ascophyllum nodosum: a novel class of enzymes containing vanadium as a prosthetic group? , 1986 .

[59]  J. Fischer,et al.  Vanadium(V) peroxy complexes. New versatile biomimetic reagents for epoxidation of olefins and hydroxylation of alkanes and aromatic hydrocarbons , 1983 .

[60]  R. Schlögl,et al.  Entwicklung von nanostrukturiertem V2O5 mithilfe von Röhre‐in‐Röhre‐Kohlenstoffstrukturen als Nanoreaktoren und Netzwerke mit effizienter Ionen‐ und Elektronenleitfähigkeit: Synthese und Elektrodenverhalten , 2009 .

[61]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[62]  A. Egorov,et al.  Chemiluminescent biosensors based on porous supports with immobilized peroxidase. , 1998, Biosensors & bioelectronics.

[63]  R. Renneberg,et al.  Highly sensitive determination of hydrogen peroxide and peroxidase with tetrathiafulvalene-based electrodes and the application in immunosensing. , 1997, Biosensors & bioelectronics.

[64]  H. Vilter Peroxidases from phaeophyceae: A vanadium(V)-dependent peroxidase from Ascophyllum nodosum , 1984 .