On differentiability properties of player convex generalized Nash equilibrium problems
暂无分享,去创建一个
[1] Francisco Facchinei,et al. Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..
[2] L. Qi,et al. A Variant of the Topkis—Veinott Method for Solving Inequality Constrained Optimization Problems , 2000 .
[3] Hanif D. Sherali,et al. Methods of Feasible Directions , 2005 .
[4] E. G. Golʹshteĭn. Theory of convex programming , 1972 .
[5] HϋKUKANE,et al. NOTE ON NONCOOPERATIVE CONVEX GAMES , 2004 .
[6] Gerard Debreu,et al. A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.
[7] Christian Kanzow,et al. Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems , 2011, Comput. Optim. Appl..
[8] Jerzy Kyparisis,et al. On uniqueness of Kuhn-Tucker multipliers in nonlinear programming , 1985, Math. Program..
[9] Stan Uryasev,et al. Relaxation algorithms to find Nash equilibria with economic applications , 2000 .
[10] Eric van Damme,et al. Non-Cooperative Games , 2000 .
[11] K. Arrow,et al. EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .
[12] Jacques Gauvin,et al. A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..
[13] R. Rubinstein,et al. On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..
[14] Convex Optimization in Signal Processing and Communications , 2010 .
[15] E. Gol′šteĭn,et al. Theory of Convex Programming , 1972 .
[16] Oliver Stein,et al. Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems , 2012, J. Glob. Optim..
[17] William Hogan,et al. Directional Derivatives for Extremal-Value Functions with Applications to the Completely Convex Case , 1973, Oper. Res..
[18] Gül Gürkan,et al. Approximations of Nash equilibria , 2008, Math. Program..
[19] R. Rockafellar. Directional differentiability of the optimal value function in a nonlinear programming problem , 1984 .
[20] Oliver Stein. On Constraint Qualifications in Nonsmooth Optimization , 2004 .
[21] A. F. Veinott,et al. On the Convergence of Some Feasible Direction Algorithms for Nonlinear Programming , 1967 .
[22] Francisco Facchinei,et al. Nash equilibria: the variational approach , 2010, Convex Optimization in Signal Processing and Communications.
[23] Christian Kanzow,et al. Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009, Comput. Optim. Appl..
[24] Hubertus Th. Jongen,et al. On Structure and Computation of Generalized Nash Equilibria , 2013, SIAM J. Optim..
[25] H. Nikaidô,et al. Note on non-cooperative convex game , 1955 .
[26] Oliver Stein,et al. Bi-Level Strategies in Semi-Infinite Programming , 2003 .
[27] G. Zoutendijk,et al. Methods of Feasible Directions , 1962, The Mathematical Gazette.
[28] Francisco Facchinei,et al. Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..
[29] Jong-Shi Pang,et al. Nonconvex Games with Side Constraints , 2011, SIAM J. Optim..