On differentiability properties of player convex generalized Nash equilibrium problems

Abstract This article studies differentiability properties for a reformulation of a player convex generalized Nash equilibrium problem as a constrained and possibly nonsmooth minimization problem. By using several results from parametric optimization we show that, apart from exceptional cases, all locally minimal points of the reformulation are differentiability points of the objective function. This justifies a numerical approach which basically ignores the possible nondifferentiabilities.

[1]  Francisco Facchinei,et al.  Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..

[2]  L. Qi,et al.  A Variant of the Topkis—Veinott Method for Solving Inequality Constrained Optimization Problems , 2000 .

[3]  Hanif D. Sherali,et al.  Methods of Feasible Directions , 2005 .

[4]  E. G. Golʹshteĭn Theory of convex programming , 1972 .

[5]  HϋKUKANE,et al.  NOTE ON NONCOOPERATIVE CONVEX GAMES , 2004 .

[6]  Gerard Debreu,et al.  A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.

[7]  Christian Kanzow,et al.  Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems , 2011, Comput. Optim. Appl..

[8]  Jerzy Kyparisis,et al.  On uniqueness of Kuhn-Tucker multipliers in nonlinear programming , 1985, Math. Program..

[9]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[10]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[11]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[12]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..

[13]  R. Rubinstein,et al.  On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..

[14]  Convex Optimization in Signal Processing and Communications , 2010 .

[15]  E. Gol′šteĭn,et al.  Theory of Convex Programming , 1972 .

[16]  Oliver Stein,et al.  Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems , 2012, J. Glob. Optim..

[17]  William Hogan,et al.  Directional Derivatives for Extremal-Value Functions with Applications to the Completely Convex Case , 1973, Oper. Res..

[18]  Gül Gürkan,et al.  Approximations of Nash equilibria , 2008, Math. Program..

[19]  R. Rockafellar Directional differentiability of the optimal value function in a nonlinear programming problem , 1984 .

[20]  Oliver Stein On Constraint Qualifications in Nonsmooth Optimization , 2004 .

[21]  A. F. Veinott,et al.  On the Convergence of Some Feasible Direction Algorithms for Nonlinear Programming , 1967 .

[22]  Francisco Facchinei,et al.  Nash equilibria: the variational approach , 2010, Convex Optimization in Signal Processing and Communications.

[23]  Christian Kanzow,et al.  Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009, Comput. Optim. Appl..

[24]  Hubertus Th. Jongen,et al.  On Structure and Computation of Generalized Nash Equilibria , 2013, SIAM J. Optim..

[25]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[26]  Oliver Stein,et al.  Bi-Level Strategies in Semi-Infinite Programming , 2003 .

[27]  G. Zoutendijk,et al.  Methods of Feasible Directions , 1962, The Mathematical Gazette.

[28]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[29]  Jong-Shi Pang,et al.  Nonconvex Games with Side Constraints , 2011, SIAM J. Optim..