Antiferromagnetic Potts Models on the Square Lattice: A High-Precision Monte Carlo Study

We study the antiferromagnetic q-state Potts model on the square lattice for q=3 and q=4, using the Wang–Swendsen–Kotecký (WSK) Monte Carlo algorithm and a powerful finite-size-scaling extrapolation method. For q=3 we obtain good control up to correlation length ξ∼5000; the data are consistent with ξ(β)=Ae2ββp(1+a1e−β+ ...) as β→∞, with p≈1. The staggered susceptibility behaves as χstagg∼ξ5/3. For q=4 the model is disordered (ξ≲2) even at zero temperature. In appendices we prove a correlation inequality for Potts antiferromagnets on a bipartite lattice, and we prove ergodicity of the WSK algorithm at zero temperature for Potts antiferromagnets on a bipartite lattice.

[1]  C. L. Henley,et al.  A constrained Potts antiferromagnet model with an interface representation , 1997 .

[2]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[3]  L. Schulman In: Finite size scaling and numerical simulation of statistical systems , 1990 .

[4]  Wang,et al.  Antiferromagnetic Potts models. , 1989, Physical review letters.

[5]  Ferrenberg,et al.  Statistical errors in histogram reweighting. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  A. Patrascioiu,et al.  Phase structure of two-dimensional spin models and percolation , 1992 .

[7]  D. Szász Correlation inequalities for non-purely-ferromagnetic systems , 1978 .

[8]  P. Pearce,et al.  Exact solution of cyclic solid-on-solid lattice models , 1989 .

[9]  T. W. Anderson,et al.  Statistical analysis of time series , 1972 .

[10]  Scaling behavior of the four-point renormalized coupling constant in the two dimensional O(2) and O(3) non-linear sigma models , 1995, hep-lat/9502005.

[11]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[12]  G. Mack,et al.  Comparison of Lattice Gauge Theories with Gauge Groups Z(2) and SU(2) , 1979 .

[13]  Antiferromagnetic Potts models on the square lattice. , 1994, Physical review. B, Condensed matter.

[14]  S. Caracciolo,et al.  Wolff-type embedding algorithms for general nonlinear σ-models , 1992, hep-lat/9205005.

[15]  Michel Le Bellac,et al.  Quantum and statistical field theory , 1991 .

[16]  TheXY model and the three-state antiferromagnetic Potts model in three dimensions: Critical properties from fluctuating boundary conditions , 1994, cond-mat/9406092.

[17]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[18]  Sokal,et al.  Comment on "Antiferromagnetic Potts models" , 1993, Physical review letters.

[19]  H. Flyvbjerg,et al.  Magnetic susceptibility of O(N) σ-models in 2D. Weak coupling results from 1 N expansion , 1991 .

[20]  Garrett S. Sylvester Inequalities for continuous-spin Ising ferromagnets , 1976 .

[21]  M. Nijs,et al.  Critical fan in the antiferromagnetic three-state Potts model , 1982 .

[22]  Ferreira,et al.  Extrapolating Monte Carlo simulations to infinite volume: Finite-size scaling at xi /L >> 1. , 1995, Physical review letters.

[23]  C. Fortuin On the random-cluster model: III. The simple random-cluster model , 1972 .

[24]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[25]  The Three-State Square-Lattice Potts Antiferromagnet at Zero Temperature , 1998, cond-mat/9801079.

[26]  K. Schotte,et al.  The three-colouring problem as a special eight-vertex model , 1986 .

[27]  H. Saleur,et al.  The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers , 1991 .

[28]  M. Henkel Finite-Size Scaling , 1999 .

[29]  J. Fröhlich Confinement in Zn lattice gauge theories implies confinement in SU(n) lattice Higgs theories , 1979 .

[30]  Wang,et al.  Three-state antiferromagnetic Potts models: A Monte Carlo study. , 1990, Physical review. B, Condensed matter.

[31]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[32]  F. Y. Wu Potts model of magnetism (invited) , 1984 .

[33]  H. Flyvbjerg,et al.  Mass gap of O(N) σ-models in 2D. Support for exact results from 1/N-expansion , 1991 .

[34]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[35]  Multi-grid Monte Carlo via XY embedding. General theory and two-dimensional O(N)-symmetric non-linear σ-models , 1996, hep-lat/9604015.

[36]  Multigrid Monte Carlo simulation via XY embedding. II. Two-dimensional SU(3) principal chiral model , 1996, hep-lat/9610021.

[37]  É. Brézin,et al.  Critical behavior of uniaxial systems with strong dipolar interactions , 1976 .

[38]  A. Brandt,et al.  Three-state Potts antiferromagnet on the triangular lattice , 1995 .

[39]  R. Baxter Three‐Colorings of the Square Lattice: A Hard Squares Model , 1970 .

[40]  C. Itzykson,et al.  Conformal invariance and applications to statistical mechanics , 1998 .

[41]  P. Pearce,et al.  Operator content of the cyclic solid-on-solid models , 1989 .

[42]  A. Sokal,et al.  Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem , 1996, cond-mat/9603068.

[43]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[44]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .

[45]  J. Cardy,et al.  Scaling Theory of the Potts Model Multicritical Point , 1980 .

[46]  M. Aizenman On the slow decay ofO(2) correlations in the absence of topological excitations: Remark on the Patrascioiu-Seiler model , 1994 .

[47]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[48]  Alan D. Sokal,et al.  Logarithmic Corrections and Finite-Size Scaling in the Two-Dimensional 4-State Potts Model , 1996 .

[49]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[50]  Kim Asymptotic scaling of the mass gap in the two-dimensional O(3) nonlinear sigma model: A numerical study. , 1994, Physical review. D, Particles and fields.

[51]  Hubert Saleur,et al.  Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups , 1990 .

[52]  M. Hasenbusch,et al.  Three-state anti-ferromagnetic Potts model in three dimensions: universality and critical amplitudes , 1994 .

[53]  Exact results on the antiferromagnetic three-state Potts model. , 1989, Physical review letters.

[54]  Robert H. Swendsen,et al.  Modern methods of analyzing Monte Carlo computer simulations , 1993 .

[55]  Kim Application of finite size scaling to Monte Carlo simulations. , 1993, Physical review letters.

[56]  Gang Sun,et al.  Interface Approach to Phase Transitions and Ordering by Monte Carlo Simulations and Its Applications to Three-Dimensional Antiferromagnetic Potts Models , 1989 .

[57]  A. L. Talapov,et al.  The magnetization of the 3D Ising model , 1996 .

[58]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[59]  U. Wolff,et al.  A Numerical method to compute the running coupling in asymptotically free theories , 1991 .

[60]  D. Scalapino,et al.  Singularities and Scaling Functions at the Potts-Model Multicritical Point , 1980 .

[61]  Sadri Hassani,et al.  Foundations Of Mathematical Physics , 1990 .

[62]  F. Y. Wu The Potts model , 1982 .