On Error Rates in Normal Approximations and Simulation Schemes for Lévy Processes

Let X=(X(t) : t≥0) be a Lévy process. In simulation, one often wants to know at what size it is possible to truncate the small jumps while retaining enough accuracy. A useful tool here is the Edgeworth expansion. We provide a third order expansion together with a uniform error bound, assuming third Lévy moment is 0. We next discuss approximating X in the finite variation case. Truncating the small jumps, we show that, adding their expected value, and further, including their variability by approximating by a Brownian motion, gives successively better results in general. Finally, some numerical illustrations involving a normal inverse Gaussian Lévy process are given.