Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E.

[1]  C. Robinson,et al.  Protein-Nucleic Acid Interactions and the Expanding Role of Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[2]  Stanley N Cohen,et al.  Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. Robinson,et al.  Mass spectrometry of Escherichia coli RNA polymerase: interactions of the core enzyme with sigma70 and Rsd protein. , 2004, Structure.

[4]  C. Robinson,et al.  Quaternary structure and catalytic activity of the Escherichia coli ribonuclease E amino-terminal catalytic domain. , 2003, Biochemistry.

[5]  S. Gottesman,et al.  Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. , 2003, Genes & development.

[6]  Robert B. Russell,et al.  GlobPlot: exploring protein sequences for globularity and disorder , 2003, Nucleic Acids Res..

[7]  Sonia Longhi,et al.  The C-terminal Domain of the Measles Virus Nucleoprotein Is Intrinsically Disordered and Folds upon Binding to the C-terminal Moiety of the Phosphoprotein* , 2003, The Journal of Biological Chemistry.

[8]  J. Flanagan,et al.  Signal Recognition Particle Binds to Ribosome-bound Signal Sequences with Fluorescence-detected Subnanomolar Affinity That Does Not Diminish as the Nascent Chain Lengthens* , 2003, The Journal of Biological Chemistry.

[9]  Stanley N Cohen,et al.  A Streptomyces coelicolor functional orthologue of Escherichia coli RNase E shows shuffling of catalytic and PNPase‐binding domains , 2003, Molecular microbiology.

[10]  J. Belasco,et al.  Two distinct regions on the surface of an RNA‐binding domain are crucial for RNase E function , 2003, Molecular microbiology.

[11]  J. Belasco,et al.  Two distinct regions on the surface of an RNA‐binding domain are crucial for RNase E function , 2002 .

[12]  S. Lin-Chao,et al.  DEAD Box RhlB RNA Helicase Physically Associates with Exoribonuclease PNPase to Degrade Double-stranded RNA Independent of the Degradosome-assembling Region of RNase E* , 2002, The Journal of Biological Chemistry.

[13]  Sidney R. Kushner,et al.  mRNA Decay in Escherichia coli Comes of Age , 2002, Journal of bacteriology.

[14]  M. Dreyfus,et al.  Function in Escherichia coli of the non‐catalytic part of RNase E: role in the degradation of ribosome‐free mRNA , 2002, Molecular microbiology.

[15]  J. Belasco,et al.  Critical Features of a Conserved RNA Stem-loop Important for Feedback Regulation of RNase E Synthesis* , 2002, The Journal of Biological Chemistry.

[16]  S. R. Kushner,et al.  Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. , 2002, Genes & development.

[17]  Kangseok Lee,et al.  RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli , 2002, Molecular microbiology.

[18]  C. Robinson,et al.  A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. , 2002, Analytical chemistry.

[19]  J. Belasco,et al.  Consequences of RNase E scarcity in Escherichia coli , 2002, Molecular microbiology.

[20]  R. Rauhut,et al.  An mRNA degrading complex in Rhodobacter capsulatus. , 2001, Nucleic acids research.

[21]  B. Luisi,et al.  Crystal structure of the Escherichia coli RNA degradosome component enolase. , 2001, Journal of molecular biology.

[22]  Leo Goodstadt,et al.  CHROMA: consensus-based colouring of multiple alignments for publication , 2001, Bioinform..

[23]  P. Vachette,et al.  Heat-induced unfolding of neocarzinostatin, a small all-beta protein investigated by small-angle X-ray scattering. , 2001, Journal of molecular biology.

[24]  A. J. Carpousis The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. , 2001, Biochemical Society transactions.

[25]  B. Luisi,et al.  A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. , 2000, Structure.

[26]  V. Kaberdin,et al.  Enhanced cleavage of RNA mediated by an interaction between substrates and the arginine-rich domain of E. coli ribonuclease E. , 2000, Journal of molecular biology.

[27]  D. Steege Emerging features of mRNA decay in bacteria. , 2000, RNA.

[28]  M. Dreyfus,et al.  The C‐terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo , 1999, Molecular microbiology.

[29]  K. Nagai,et al.  Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA. , 1999, Biochemical and biophysical research communications.

[30]  R. Rauhut,et al.  mRNA degradation in bacteria. , 1999, FEMS microbiology reviews.

[31]  V. Kaberdin,et al.  The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Higgins,et al.  Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. , 1998, Genes & development.

[33]  J. Liao,et al.  Poly(A)- and poly(U)-specific RNA 3′ tail shortening by E. coli ribonuclease E , 1998, Nature.

[34]  C. Higgins,et al.  Polyphosphate kinase is a component of the Escherichia coli RNA degradosome , 1997, Molecular microbiology.

[35]  K. J. McDowall,et al.  RNase E: still a wonderfully mysterious enzyme , 1997, Molecular microbiology.

[36]  T. Ogura,et al.  RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli , 1996, Journal of bacteriology.

[37]  C. Higgins,et al.  A DEAD-box RNA helicase in the Escherichia coli RNA degradosome , 1996, Nature.

[38]  V. Kaberdin,et al.  Proteins associated with RNase E in a multicomponent ribonucleolytic complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Cohen,et al.  The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. , 1996, Journal of molecular biology.

[40]  G. Björk,et al.  Evidence for an RNA Binding Region in the Escherichia coli processing Endoribonuclease RNase E (*) , 1995, The Journal of Biological Chemistry.

[41]  H. Causton,et al.  A protein complex mediating mRNA degradation in Escherichia coli , 1994, Molecular microbiology.

[42]  John C. Wootton,et al.  Non-globular Domains in Protein Sequences: Automated Segmentation Using Complexity Measures , 1994, Comput. Chem..

[43]  S Cusack,et al.  The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). , 1994, Science.

[44]  H. Krisch,et al.  Copurification of E. coli RNAase E and PNPase: Evidence for a specific association between two enzymes important in RNA processing and degradation , 1994, Cell.

[45]  S. Casaregola,et al.  Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that migrates as a 180 kDa protein. , 1992, Journal of molecular biology.

[46]  S. Casaregola,et al.  Cloning and Analysis of the Entire Escherichia coli ams Gene , 1992 .

[47]  A. V. Semenyuk,et al.  GNOM – a program package for small-angle scattering data processing , 1991 .

[48]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[49]  F. Claverie-Martin,et al.  Analysis of the altered mRNA stability (ams) gene from Escherichia coli. Nucleotide sequence, transcriptional analysis, and homology of its product to MRP3, a mitochondrial ribosomal protein from Neurospora crassa. , 1991, The Journal of biological chemistry.

[50]  O. Kratky,et al.  Small-angle X-ray scattering. , 1982, Methods in enzymology.

[51]  M. Kuwano,et al.  A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. , 1979, Journal of molecular biology.

[52]  C. Robinson,et al.  Protein-Nucleic Acid Interactions – the Expanding Role of M ass Spectrometry (MS) , 2004 .

[53]  P. Romero,et al.  Sequence complexity of disordered protein , 2001, Proteins.

[54]  Christopher J. Oldfield,et al.  Intrinsically disordered protein. , 2001, Journal of molecular graphics & modelling.

[55]  A K Dunker,et al.  Comparing predictors of disordered protein. , 2000, Genome informatics. Workshop on Genome Informatics.

[56]  Obradovic,et al.  Predicting Protein Disorder for N-, C-, and Internal Regions. , 1999, Genome informatics. Workshop on Genome Informatics.

[57]  城戸 麻喜子 RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in escherichia coli , 1998 .

[58]  J. Belasco,et al.  RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. , 1995, Genes & development.

[59]  H. Krisch,et al.  Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. , 1992, Genes & development.

[60]  F. Wold,et al.  [52] Enolase from Escherichia coli , 1975 .

[61]  F. Wold,et al.  Enolase from Escherichia coli. , 1975, Methods in enzymology.