Resistance of modified polyvinyl chloride/wood flour composites to basidiomycetes

Aminosilane, melamine and acetic anhydride treated wood flour were added to polyvinyl chloride (PVC) and manufactured into wood-plastic composites (WPC) panels in order to investigate the influence of modification on the resistance to basidiomycetes of the composite. The composite consisted of 50 wt% wood and 50 wt% PVC dry blend. White rot (Trametes versicolor) and brown rot (Coniophora puteana) fungi were used to inoculate the composite. Test procedure was carried out according to ENV 12038 with an additional water pre-treatment of the composite. All tested formulations showed high resistance to basidiomycetes under the test conditions. With regard to the modifications used, only aminosilane treated composites showed slightly decreased weight loss values compared to the untreated reference.ZusammenfassungFür die Modifizierung der Holzkomponente wurden verschiedene Aminosilane, Melamin und Essigsäureanhydrid verwendet. Das behandelte Holzmehl wurde mit PVC zu WPC-Platten verarbeitet, um den Einfluss der Holzmodifizierung auf die Dauerhaftigkeit des Komposits zu untersuchen. Das Mischungsverhältnis von Holz zu PVC dry blend betrug 50/50 Gewichtsprozent. Weiß- und Braunfäulepilze (Trametes versicolor, Coniophora puteana) wurden mit dem Testmaterial beimpft. Die Resistenzprüfung wurde in Anlehnung an ENV 12038 durchgeführt, wobei eine zusätzliche Wasserlagerung der Komposite vor Versuchsbeginn implementiert wurde. Alle Formulierungen zeigten eine hohe Resistenz gegenüber Basidiomyceten. Im Vergleich zur unbehandelten Referenz wurden lediglich bei den Aminosilan behandelten Kompositen leicht verringerte Masseverluste gemessen.

[1]  H. Kaczmarek,et al.  Biodegradation of plasticized poly(vinyl chloride) containing cellulose , 2007 .

[2]  B. Dawson-Andoh,et al.  Mold susceptibility of rigid PVC/wood‐flour composites , 2004 .

[3]  B. Kokta,et al.  Composites of polyvinyl chloride–wood fibers. III: Effect of silane as coupling agent , 1990 .

[4]  Douglas J. Gardner,et al.  Fundamental aspects of wood as a component of thermoplastic composites , 2003 .

[5]  L. Reinprecht,et al.  DENSITY PROFILES OF SPRUCE WOOD CHANGED BY BROWNROT AND WHITEROT FUNGI , 2007 .

[6]  David P. Harper,et al.  Effect of Wood Species on Water Sorption and Durability of Wood-Plastic Composites , 2008 .

[7]  Haihong Jiang,et al.  Development of poly(vinyl chloride)/wood composites. A literature review , 2004 .

[8]  R. Rowell Challenges in Biomass–Thermoplastic Composites , 2007 .

[9]  W. Adam,et al.  Electron Energy Loss Spectroscopy (EELS) for Quantification of Cell-Wall Penetration of a Melamine Resin , 1999 .

[10]  H. Thoemen,et al.  Effects of material parameters on the diffusion and sorption properties of wood‐flour/polypropylene composites , 2007 .

[11]  D. Harper,et al.  Effect of Extractives on Water Sorption and Durability of Wood-Plastic Composites , 2009 .

[12]  A. McDonald,et al.  Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites , 2011 .

[13]  Jeffrey J. Morrell,et al.  Patterns of Fungal Attack in Wood-Plastic Composites Following Exposure in a Soil Block Test , 2000 .

[14]  Michael P. Wolcott,et al.  Biological Degradation of Wood-Plastic Composites (WPC) and Strategies for Improving the Resistance of WPC against Biological Decay , 2008 .

[15]  C. Hsu,et al.  Effects of Wood Particle Size and Mixing Ratios of HDPE on the Properties of the Composites , 2006, Holz als Roh- und Werkstoff.

[16]  Chul B. Park,et al.  Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites , 1998 .

[17]  H. Militz,et al.  Resistance of acetylated wood to basidiomycetes, softrot and blue stain. , 1994 .

[18]  P. Larsson Brelid,et al.  Resistance of acetylated wood to biological degradation , 2000, Holz als Roh- und Werkstoff.

[19]  R. Erickson,et al.  Wood particle size affects the decay resistance of woodfiber/thermoplastic composites , 2002 .

[20]  N. Sombatsompop,et al.  Average mixing torque, tensile and impact properties, and thermal stability of poly(vinyl chloride)/sawdust composites with different silane coupling agents , 2005 .

[21]  Craig Clemons,et al.  Wood-plastic composites in the United States: the interfacing of two industries , 2002 .

[22]  Chul B. Park,et al.  Effect of surface properties on the adhesion between PVC and wood veneer laminates , 1998 .

[23]  B. Kokta,et al.  Composites of Polyvinyl Chloride-Wood Fibers. I. Effect of Isocyanate as a Bonding Agent , 1990 .

[24]  Jeffrey J. Morrell,et al.  Towards the Development of Accelerated Methods for Assessing the Durability of Wood Plastic Composites , 2007 .

[25]  M. Sain,et al.  Evaluation of proposed test methods to determine decay resistance of natural fiber plastic composites , 2005 .

[26]  R. Wimmer,et al.  Impregnation of softwood cell walls with melamine-formaldehyde resin. , 2003, Bioresource technology.

[27]  R. Rowell,et al.  Dimensional stability, decay resistance, and mechanical properties of veneer-faced low-density particleboards made from acetylated wood , 1989 .

[28]  Jan Van den Bulcke,et al.  Moisture dynamics of WPC and the impact on fungal testing , 2010 .

[29]  Craig M. Clemons,et al.  Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites , 2004 .

[30]  H. Militz,et al.  Influence of various wood modifications on the properties of polyvinyl chloride/wood flour composites , 2012 .

[31]  Peter E. Laks,et al.  Efficacy of curtailment announcements as a predictor of lumber supply , 2001 .

[32]  Michael P. Wolcott,et al.  INFLUENCE OF FUNGAL DECAY AND MOISTURE ABSORPTION ON MECHANICAL PROPERTIES OF EXTRUDED WOOD-PLASTIC COMPOSITES , 2005 .