Stochastic automated search methods in cellular automata: the discovery of tens of thousands of glider guns

This paper deals with the spontaneous emergence of glider guns in cellular automata. An evolutionary search for glider guns with different parameters is described and other search techniques are also presented to provide a benchmark. We demonstrate the spontaneous emergence of an important number of novel glider guns discovered by an evolutionary algorithm. An automatic process to identify guns leads to a classification of glider guns that takes into account the number of emitted gliders of a specific type. We also show it is possible to discover guns for many other types of gliders. Significantly, all the found automata can be candidate to an automatic search for collision-based universal cellular automata simulating Turing machines in their space-time dynamics using gliders and glider guns.

[1]  James A. Reggia,et al.  Automatic discovery of self-replicating structures in cellular automata , 1997, IEEE Trans. Evol. Comput..

[2]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[3]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[4]  N. Margolus Physics-like models of computation☆ , 1984 .

[5]  Carter Bays Candidates for the Game of Life in Three Dimensions , 1987, Complex Syst..

[6]  S. Wolfram,et al.  Two-dimensional cellular automata , 1985 .

[7]  R. Drechsler,et al.  Genetic Programming III: Darwinian Invention and Problem , 1999 .

[8]  Jean-Jacques Chabrier,et al.  Research of Complex Forms in Cellular Automata by Evolutionary Algorithms , 2003, Artificial Evolution.

[9]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[10]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[11]  Andrew Adamatzky,et al.  On Spiral Glider-Guns In Hexagonal Cellular Automata: Activator-Inhibitor Paradigm , 2006 .

[12]  Michael F. Shlesinger,et al.  Dynamic patterns in complex systems , 1988 .

[13]  A. Adamatzky Universal Dynamical Computation in Multidimensional Excitable Lattices , 1998 .

[14]  Pierre Collet,et al.  A New Universal Cellular Automaton Discovered by Evolutionary Algorithms , 2004, GECCO.

[15]  Emmanuel Sapin,et al.  Research of Complexity in Cellular Automata through Evolutionary Algorithms , 2007, Complex Syst..

[16]  Moshe Sipper,et al.  Evolving Uniform and Non-Uniform Cellular Automata Networks , 1997 .

[17]  Andrew Adamatzky,et al.  Phenomenology of glider collisions in cellular automaton Rule 54 and associated logical gates , 2006 .

[18]  Pierre Collet,et al.  Demonstration of the Universality of a New Cellular Automaton , 2007, Int. J. Unconv. Comput..

[19]  James P. Crutchfield,et al.  Evolving cellular automata to perform computations , 1997 .

[20]  James P. Crutchfield,et al.  Mechanisms of Emergent Computation in Cellular Automata , 1998, PPSN.

[21]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[22]  Pedro P. B. de Oliveira,et al.  Very Effective Evolutionary Techniques for Searching Cellular Automata Rule Spaces , 2008, J. Cell. Autom..

[23]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[24]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[25]  Jean-Claude Heudin,et al.  A New Candidate Rule for the Game of Two-dimensional Life , 1996, Complex Syst..

[26]  James P. Crutchfield,et al.  Evolving Globally Synchronized Cellular Automata , 1995, ICGA.

[27]  Katsunobu Imai,et al.  Universal Computing in Reversible and Number-Conserving Two-Dimensional Cellular Spaces , 2002, Collision-Based Computing.

[28]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[29]  Andrew Adamatzky Dynamical universal computation in excitable lattices , 1998, MCU.

[30]  Michael F. Shlesinger,et al.  DYNAMIC PATTERNS IN COMPLEX SYSTEMS: Proceedings of a Conference, sponsored by Florida Atlantic University, held in honor of Hermann Haken on the occasion of his 60th birthday , 1988 .

[31]  Sensitive dependence on initial conditions for cellular automata. , 1997, Chaos.

[32]  Melanie Mitchell,et al.  Evolving cellular automata to perform computations: mechanisms and impediments , 1994 .

[33]  John E. Myers,et al.  Discrete dynamics lab (DDLAB) , 1997 .

[34]  Jean-Jacques Chabrier,et al.  Research of a Cellular Automaton Simulating Logic Gates by Evolutionary Algorithms , 2003, EuroGP.

[35]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[36]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[37]  Moshe Sipper,et al.  Evolution of Parallel Cellular Machines , 1997, Lecture Notes in Computer Science.

[38]  Andrew Wuensche,et al.  Discrete Dynamics Lab , 2009 .

[39]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[40]  Andrew Wuensche,et al.  On Spiral Glider-Guns in Hexagonal Cellular Automata: Activator-Inhibitor Paradigm , 2006, ACRI.