Numerical modeling of reactive polymer flow in porous media

Abstract This paper presents a new numerical model of reactive polymer flow in heterogeneous porous media. A moment representation of the log–normal polymer molecular weight distribution is used to model polymer as a multi-component species. Three leading moments are used to simulate the polymer transport and reaction processes in a two-dimensional porous medium. The 2D, multi-phase polymer flow model is based on a mass-transport equation for multi-component species and is coupled with kinetic models of the gelation process using an operator splitting scheme. The sensitivity of various parameters and constitutive equations is presented.

[1]  Albert J. Valocchi,et al.  Accuracy of operator splitting for advection‐dispersion‐reaction problems , 1992 .

[2]  Randall S. Seright,et al.  Reduction of Oil and Water Permeabilities Using Gels , 1992 .

[3]  Rapier Dawson,et al.  Inaccessible pore volume in polymer flooding , 1972 .

[4]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[5]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[6]  A. Hamielec,et al.  A kinetic model for olefin polymerization in high-pressure tubular reactors : a review and update , 1992 .

[7]  Charles-Michel Marle,et al.  On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media , 1982 .

[8]  T. Crowley,et al.  Discrete Optimal Control of Molecular Weight Distribution in a Batch Free Radical Polymerization Process , 1997 .

[9]  H. S. Fogler,et al.  Pore-Level Mechanisms for Altering Multiphase Permeability with Gels , 1997 .

[10]  H. D. Silva,et al.  Novel Approaches to Cross-linking High Molecular Weight Polysaccharides: Application to Guar-based Hydraulic Fracturing Fluids , 2000 .

[11]  V. S. Tripathi,et al.  A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components , 1989 .

[12]  Dispersion and polydispersity effects in the transport of xanthan in porous media , 1989 .

[13]  Stephen P. McCarthy,et al.  Compressibility and relaxation of fiber reinforcements during composite processing , 1991 .

[14]  Claudio Scali,et al.  Analysis of the molecular weight distribution in free radical polymerization : Modelling of the MWD from the analysis of experimental GPC curves , 1999 .

[15]  Kenneth Stuart Sorbie,et al.  Polymer-improved oil recovery , 1991 .

[16]  T. E. Burchfield,et al.  Permeability modification simulator studies of polymer-gel-treatment initiation time and crossflow effects on waterflood oil recovery , 1993 .

[17]  E. Koval,et al.  A Method for Predicting the Performance of Unstable Miscible Displacement in Heterogeneous Media , 1963 .

[18]  C. Steefel,et al.  A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution rea , 1994 .

[19]  Carlos Ayora,et al.  Modeling of non-isothermal multi-component reactive transport in field scale porous media flow systems , 1999 .

[20]  K. Choi,et al.  Calculation of molecular weight distribution in a batch thermal polymerization of styrene , 1998 .

[21]  G. Willhite,et al.  Mathematical Model of In-Situ Gelation of Polyacrylamide by a Redox Process , 1993 .

[22]  Alexander Penlidis,et al.  Mathematical Modeling of Multicomponent Chain-Growth Polymerizations in Batch, Semibatch, and Continuous Reactors: A Review , 1997 .

[23]  Randall S. Seright,et al.  Why do gels reduce water permeability more than oil permeability , 1995 .

[24]  J. A. Biesenberger,et al.  Principles of Polymerization Engineering , 1983 .

[25]  A. Walter,et al.  Modeling of multicomponent reactive transport in groundwater: 1. Model development and evaluation , 1994 .

[26]  R. Bhagat,et al.  Infiltration of Liquid Metals in Porous Compacts: Modeling of Permeabilities During Reactive Melt Infiltration , 1999 .

[27]  R. S. Schechter,et al.  Improved Oil Recovery by Surfactant and Polymer Flooding , 1977 .

[28]  G. R. Jerauld,et al.  The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore-level modeling , 1990 .

[29]  Neil A. Dotson,et al.  Polymerization Process Modeling , 1995 .

[30]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[31]  Timothy J. Crowley,et al.  Calculation of Molecular Weight Distribution from Molecular Weight Moments in Free Radical Polymerization , 1997 .

[32]  Peter Engesgaard,et al.  A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite , 1992 .

[33]  McCabe,et al.  Applications of a New, Efficient Hydraulic Fracturing Fluid System , 1999 .

[34]  A network of zones model for reactive polymer enhanced miscible displacement in a porous cylinder , 1998 .

[35]  Lin A. Ferrand,et al.  Toward an improved understanding of multiphase flow in porous media , 1998 .

[36]  H. Rhee,et al.  Molecular‐weight distribution attainable in a batch free‐radical polymerization , 1999 .

[37]  Karsten E. Thompson,et al.  Selective Conformance Control in Heterogeneous Reservoirs by Use of Unstable, Reactive Displacements , 1999 .

[38]  Michael D. Gilchrist,et al.  Manufacturing of Thermoplastic Composites from Commingled Yarns-A Review , 1998 .

[39]  Jean Romero,et al.  Theoretical Model and Numerical Investigation of Near-Wellbore Effects in Hydraulic Fracturing , 2000 .

[40]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..